Name:					UPES					
Enroln										
		UNIVE	RSITY OF PETROL							
Cours	e: Chemica	l Engineering	End Semester Exami	ination, December 20	118					
Semes			computing							
_		[ech. CE-PD (Chemical Engineerin	g- Sp. Process Design						
	03 hrs. Ictions: O	non Doolis on	d Notos oto		Max. Marks	: 100				
Instru		pen Books and uestion Paper	has to be returned at	the end of the exam						
	t		E QUESTIONS ARE							
Q1	Consider	the following				30	CO5			
Q1	Consider	the following	ODE-DVI.			marks	003			
	$\frac{d^2 y}{dx^2} + 2 yx = xy \int_{x=0}^{1} (y^2 e^x) dx; \ 0 \le x \le 1$									
		dx^2	x=0							
				x						
				`````````````````````````````````						
		a	×.	× ₃						
			1 2201	5 ~=1.0						
	with $y(x = 0) = 4$;									
	and $y(x = 1) = 9$									
	Use $N =$	Use $N = 2$ (therefore, $N + 1 = 3$ FD points, x_1 , x_2 and x_3)								
	(a)	Write the va	lues of y_1 and y_3		(05)					
	(b)	Use Simpso	n's rule (with $h = 0.5$) to evaluate the inte	gral on the right					
		hand side. Compute all the values and give a simple <i>final</i> expression								
		(10)								
	(c)	(c) Use the finite difference technique to obtain an equation for y_2 . Simplify								
		as	much	as	possible					
		(10)								

	(d) Check if $y_2 = 0.02345$ satisfies this equation (05)		
Q2	Consider the following ODE-IVP involving two variables, $y_1(t)$ and $y_2(t)$: i with $y(t = 0) = y_0 = \begin{bmatrix} 3 & 0 \end{bmatrix}^T$ (a) Apply the <i>implicit</i> Euler technique (for one step only, i.e., from $t = 0$ to $t = h$ = 0.1) to obtain your answers in the following form: $F(y) \equiv i$ (10) (b) Now use the Newton-Raphson-Kantarovich technique <i>WITHOUT</i> using inverses in any part of this question to obtain i Do one NRK iteration only. Obtain numerical answers (10) (c) Plug in your answers in part (b) of this question (i.e., into the $F(y) = 0$ equation) and see what you get (05) (d) Comment on your answer to part (c) of this question. (10)	35 marks	CO 2, CO 3 CO 4
Q3	Consider the third order $(q - 1 = 3)$ implicit Hermite algorithm (in Table 5.1) of integrating ODE-IVPs for a single variable, $y(x)$, with $\alpha_0 = \frac{1}{2}$ $\alpha_1 = \alpha_3 = \alpha_4 = = 0$ $\alpha_2 = \frac{1}{2}$ $\beta_0 = \frac{-1}{4}$	35 marks	CO 2, CO 3

$\beta_1 = \beta_3 = \beta_4 = \ldots = 0$	
$\beta_2 = \frac{1}{4}$	
Continued	
(a) Write down the algorithm for y_{n+1} in terms of y_i and y'_i (05)	
(b) Using $\frac{dy}{dt} = \lambda y$, $y(t=0) = y_0$, obtain the characteristic equation for μ and solve	
for μ_i [Hint: Note that you will get <i>two</i> values of μ_i] (10)	
(c) Which of these two roots is the <i>genuine</i> root and which is the <i>spurious</i> root (05)	
(d) What is the <i>requirement of stability</i> for this problem? (15)	
* * *	