Name: Enrolment No:			
\left. UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 $\right]$			
ALL THREE QUESTIONS ARE COMPULSORY (Total 100 Marks)			
Q1	Consider the following ODE-BVP: $\frac{d^{2} y}{d x^{2}}+2 y x=x y \int_{x=0}^{1}\left(y^{2} e^{x}\right) d x ; 0 \leq \mathrm{x} \leq 1$ with $y(x=0)=4 ; \quad x=0$ and $y(x=1)=9$ Use $N=2$ (therefore, $N+1=3$ FD points, x_{1}, x_{2} and x_{3}) (a) Write the values of y_{1} and y_{3} (b) Use Simpson's rule (with $h=0.5$) to evaluate the integral on the right hand side. Compute all the values and give a simple final expression (c) Use the finite difference technique to obtain an equation for y_{2}. Simplify as much as possible (10)	$\begin{gathered} 30 \\ \text { marks } \end{gathered}$	CO5

	(d) Check if $y_{2}=0.02345$ satisfies this equation (05)		
Q2	Consider the following ODE-IVP involving two variables, $y_{1}(\mathrm{t})$ and $y_{2}(\mathrm{t})$: i with $\boldsymbol{y}(t=0)=\boldsymbol{y}_{0}=\left[\begin{array}{ll}3 & 0\end{array}\right]^{\mathrm{T}}$ (a) Apply the implicit Euler technique (for one step only, i.e., from $t=0$ to $t=h$ $=0.1$) to obtain your answers in the following form: $\begin{equation*} F(y) \equiv i \tag{10} \end{equation*}$ (b) Now use the Newton-Raphson-Kantarovich technique WITHOUT using inverses in any part of this question to obtain i Do one NRK iteration only. Obtain numerical answers (10) (c) Plug in your answers in part (b) of this question (i.e., into the $\boldsymbol{F}(\boldsymbol{y})=\mathbf{0}$ equation) and see what you get (05) (d) Comment on your answer to part (c) of this question. (10)	$\begin{gathered} 35 \\ \text { marks } \end{gathered}$	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$
Q3	Consider the third order $(q-1=3)$ implicit Hermite algorithm (in Table 5.1) of integrating ODE-IVPs for a single variable, $y(x)$, with $\begin{aligned} & \alpha_{0}=\frac{1}{2} \\ & \alpha_{1}=\alpha_{3}=\alpha_{4}=\ldots=0 \\ & \alpha_{2}=\frac{1}{2} \\ & \beta_{0}=\frac{-1}{4} \end{aligned}$	$\begin{gathered} 35 \\ \text { marks } \end{gathered}$	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} 3 \end{aligned}$

$$
\begin{aligned}
& \beta_{1}=\beta_{3}=\beta_{4}=\ldots=0 \\
& \beta_{2}=\frac{1}{4}
\end{aligned}
$$

(a) Write down the algorithm for y_{n+1} in terms of y_{i} and y_{i}^{\prime}
(b) Using $\frac{d y}{d t}=\lambda y, y(t=0)=y_{0}$, obtain the characteristic equation for μ and solve for μ_{i} [Hint: Note that you will get two values of μ_{i}]
(c) Which of these two roots is the genuine root and which is the spurious root
(d) What is the requirement of stability for this problem?

