

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 7. | Let $x_{0}$ be an initial approximation of the root of the equation $f(x)=0$, where $f(x)$ is differentiable at $x=x_{0}$. Derive the first approximate root $x_{1}$ by Newton-Raphson method. Hence find the first approximate root of the equation $\log _{e} x+x-3=0$ <br> considering $x_{0}=2$. | 10 | CO2 |
| 8. | Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h=0.1$ for the differential equation $\frac{d y}{d x}=x^{2}+y^{2}$ <br> with the initial condition $y(1)=1.5$. | 10 | CO3 |
| 9. | Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Seidel method to evaluate an approximate solution, taking the initial approximation as $x_{1}^{(0)}=1, x_{2}^{(0)}=0, x_{3}^{(0)}=1$. Perform three iterations. $\begin{aligned} & x_{1}+5 x_{2}+3 x_{3}=28 \\ & 12 x_{1}+3 x_{2}-5 x_{3}=1 \\ & 3 x_{1}+7 x_{2}+13 x_{3}=76 . \end{aligned}$ <br> OR <br> Using Gauss-Jacobi method, solve the following system of equations starting with initial solution as $x_{1}^{(0)}=\frac{9}{5}, x_{2}^{(0)}=\frac{4}{5}, x_{3}^{(0)}=\frac{6}{5}$. Perform three iterations. $\left\lvert\, \begin{aligned} & 5 x_{1}-x_{2}=9 \\ & -x_{1}+5 x_{2}-x_{3}=4 \\ & -x_{2}+5 x_{3}=-6 . \end{aligned}\right.$ | 10 | CO2 |
| SECTION-C(Q10 is compulsory; Q11 has two parts, Q11.A and Q11.B, both have internal choices) |  |  |  |
| 10.A | Evaluate the integration $\int_{0}^{0.8} \frac{\sin x}{x} d x$, using (i) Simpson's $\frac{1}{3}$ rule and (ii) Simpson's $\frac{3}{8}$ rule, by dividing the intervals $[0,0.8]$ into six equal parts. | 10 | CO1 |
| 10.B | Consider a matrix $A=\left[\begin{array}{ccc}4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26\end{array}\right]$. <br> i. Is it possible to find LU-decomposition for the matrix $A$ in form of $A=L L^{T}$, where L is a lower triangular matrix, by Cholesky method? <br> ii. If yes, decompose the matrix in form of $A=L L^{T}$. <br> iii. Hence, find the solution of the following system by Cholesky method. $4 x_{1}+2 x_{2}+6 x_{3}=16$ | 10 | CO2 |


|  | $\begin{aligned} & 2 x_{1}+82 x_{2}+39 x_{3}=206 \\ & 6 x_{1}+39 x_{2}+26 x_{3}=113 \\ & \hline \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
| 11.A | Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{d y}{d x}=-k y, \text { where } k=0.01$ <br> Given that $x_{0}=0$ and $y_{0}=100$. Determine how much substance will remain at the moment $x=100$, using Modified Euler's method with the step-length $h=50$. <br> OR <br> Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the figure by Liebmann's iteration process. Perform five iterations. | 10 | CO3 |
| 11.B | Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}$ with the conditions $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. <br> OR <br> Using Crank-Nicholson's method, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$, given that $u(x, 0)=0, u(0, t)=0, u(1, t)=50 t$. Compute $u$ for two steps in $t$ direction taking $h=\frac{1}{4}$. | 10 | CO3 |



|  | differentiable at $x=x_{0}$. Derive the first approximate root $x_{1}$ by Newton-Raphson method. Hence find the first approximate root of the equation $2 x+\log _{10} x-7=0$ <br> considering $x_{0}=3.5$. |  |  |
| :---: | :---: | :---: | :---: |
| 8. | Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{d y}{d x}=-k y, \text { where } k=0.01$ <br> Given that $x_{0}=0$ and $y_{0}=100$. Determine how much substance will remain at the moment $x=100$, using Modified Euler's method with the step-length $h=50$. | 10 | CO 3 |
| 9. | Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Jacobi method to evaluate an approximate solution, taking the initial approximation as $x_{1}^{(0)}=1, x_{2}^{(0)}=0, x_{3}^{(0)}=1$. Perform three iterations. $\begin{aligned} & x_{1}+5 x_{2}+3 x_{3}=28 \\ & 12 x_{1}+3 x_{2}-5 x_{3}=1 \\ & 3 x_{1}+7 x_{2}+13 x_{3}=76 . \end{aligned}$ <br> OR <br> Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then using Gauss-Seidal method, solve the following system of equations starting with initial solution as $x_{1}^{(0)}=\frac{9}{5}, x_{2}^{(0)}=\frac{4}{5}, x_{3}^{(0)}=\frac{6}{5}$. Perform three iterations. $-x_{1}+5 x_{2}-x_{3}=4$ <br> $5 x_{1}-x_{2}=9$ $-x_{2}+5 x_{3}=-6$ | 10 | CO 2 |
| SECTION-C(Q10 is compulsory; Q11 has two parts, Q11.A and Q11.B, both have internal choices) |  |  |  |
| 10.A | Evaluate the integration $\int_{0}^{\frac{\pi}{2}} \sqrt{1-k \sin ^{2} \phi} d \phi, k=0.162$, by Simpson's $\frac{1}{3}$ rule, dividing the interval $0 \leq \phi \leq \frac{\pi}{2}$ into six equal subintervals. | 10 | CO1 |
| 10.B | Consider a matrix $A=\left[\begin{array}{ccc}4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26\end{array}\right]$. <br> i. Is it possible to find LU-decomposition for the matrix $A$ in form of $A=L L^{T}$, where L is a lower triangular matrix, by Cholesky method? <br> ii. If yes, decompose the matrix in form of $A=L L^{T}$. <br> iii. Hence, find the solution of the following system by Cholesky method. $\begin{aligned} & 4 x_{1}+2 x_{2}+6 x_{3}=16 \\ & 2 x_{1}+82 x_{2}+39 x_{3}=206 \end{aligned}$ | 10 | CO2 |


|  | $6 x_{1}+39 x_{2}+26 x_{3}=113$ |  |  |
| :---: | :---: | :---: | :---: |
| 11.A | Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h=0.1$ for the differential equation $\frac{d y}{d x}=x^{2}+y^{2}$ <br> with the initial condition $y(1)=1.5$. <br> OR <br> Solve the Poisson's equation $u_{x x}+u_{y y}=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length 1 . Perform three iterations by Gauss Seidal method to solve the linear equations in $u$. . | 10 | CO3 |
| 11.B | Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}$ with the conditions $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. <br> OR <br> Using Crank-Nicholson's method, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$, given that $u(x, 0)=0, u(0, t)=0, u(1, t)=50 t$. Compute $u$ for two steps in $t$ direction taking $h=\frac{1}{4}$. | 10 | CO3 |

