Name: Enrolment No:				Ų	UF	PES				
	UN		TY OF PET					J D]	IES	
Course Course	Name	e: B. Tech C	ivilE-Sz-Infra umerical Meth		tion, Decem	idei 2	Sem Time	e	r : III :03] arks : 100	hrs
		npt all questic arrying 20 ma	ons from Sectio rks).	n A (each c	arrying 4 mark	ks); Sec	etion B (eacl	h ca	rrying 10	marks);
			()	SECTIO						
Q. No.			(A	ttempt an o	<u>Juestions</u>				Marks	CO
1.	Estimate	the missing f	igures in the fol 2 $-i$	lowing table	$\frac{4}{-i}$		532		[4]	CO1
2.		-	r relation $E \equiv e$ respectively. (<i>h</i>			ote the	e Shifting a	nd	[4]	CO1
3.	$x^2 + \log_e x$ Find the	x - 2 = 0.	ial approximation mate root of the		-		ration meth	od	[4]	CO2
4.	Decomp	ose the matrix	$A = \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix}$ in "	'LU" form b	y Crout's deco	omposi	tion method		[4]	CO2
5.			on by Picard m on $\frac{dy}{dx} = x - y$, with				e of $y(0.2)$:	for	[4]	CO3
				SECTIO		. -		I	I	
6.	are not correspo construc	nction $f(x)$ b necessarily nding entries. t an approxim	<u>06-Q8 are comp</u> e known for (<i>n</i> equi-spaced, Derive Newton nate polynomia $s\phi(x_j)=f(x_j)=y$	+1) argume and $y_j = f(x)$ n's divided (x) of c	ents, namely x x _j), for $j=0$ difference inte degree less that	$x_0, x_1, x_0, x_1, x_1, x_1, x_1, x_2, x_1, x_1, x_1, x_1, x_1, x_1, x_1, x_1$	₂ ,,x _n ,whi ,n be t ion formula	to	10	CO1

7.	Let x_0 be an initial approximation of the root of the equation $f(x)=0$, where $f(x)$ is differentiable at $x=x_0$. Derive the first approximate root x_1 by Newton-Raphson method. Hence find the first approximate root of the equation $\log_e x+x-3=0$, considering $x_0=2$.	10	CO2
8.	Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length h=0.1 for the differential equation $\frac{dy}{dx} = x^2 + y^2$, with the initial condition $y(1)=1.5$.	10	CO3
9.	Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Seidel method to evaluate an approximate solution, taking the initial approximation as $x_1^{(0)}=1, x_2^{(0)}=0, x_3^{(0)}=1$. Perform three iterations. $x_1+5x_2+3x_3=28$ $12x_1+3x_2-5x_3=1$ $3x_1+7x_2+13x_3=76$. OR Using Gauss-Jacobi method, solve the following system of equations starting with initial solution as $x_1^{(0)}=\frac{9}{5}, x_2^{(0)}=\frac{4}{5}, x_3^{(0)}=\frac{6}{5}$. Perform three iterations. $5x_1-x_2=9$ $-x_1+5x_2-x_3=4$ $-x_2+5x_3=-6$.	10	CO2
	SECTION-C (Q10 is compulsory; Q11 has two parts, Q11.A and Q11.B, both have internal c	hoices)	
10.A	Evaluate the integration $\int_{0}^{0.8} \frac{\sin x}{x} dx$, using (<i>i</i>) Simpson's $\frac{1}{3}$ rule and (<i>ii</i>) Simpson's $\frac{3}{8}$ rule, by dividing the intervals [0, 0.8] into six equal parts.	10	C01
10.B	Consider a matrix $A = \begin{bmatrix} 4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26 \end{bmatrix}$. i. Is it possible to find LU-decomposition for the matrix A in form of $A = LL^{T}$, where L is a lower triangular matrix, by Cholesky method? ii. If yes, decompose the matrix in form of $A = LL^{T}$. iii. Hence, find the solution of the following system by Cholesky method. $4x_1+2x_2+6x_3=16$	10	CO2

11.A	$6x_1+39x_2+26x_3=113$ Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{dy}{dx} = -ky$, where $k = 0.01$. Given that $x_0=0$ and $y_0=100$. Determine how much substance will remain at the moment $x = 100$, using Modified Euler's method with the step-length $h = 50$. OR Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in the figure by Liebmann's iteration process. Perform five iterations. $\frac{dy}{dx} = -ky, \text{ where } k = 0.01.$	10	CO3
11.B	Solve $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$ with the conditions $u(0,t)=0, u(4,t)=0, u(x,0)=x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{xx}=16u_t, 0 < x < 1, t > 0$, given that $u(x,0)=0, u(0,t)=0, u(1,t)=50t$. Compute u for two steps in t direction taking $h=\frac{1}{4}$.	10	CO3

*****GOOD LUCK*****

Name: Enrolment No:						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018						
Program Course Course Nos. of	nme Name: B. Tech CivilE-Sz-InfraSemestreName: Applied Numerical MethodsTimeCode: MATH 3002Max. Methods	er : III : 03] arks : 100	hrs			
	ions: Attempt all questions from Section A (each carrying 4 marks); Section B (each carrying 20 marks). SECTION A	arrying 10	marks);			
	(Attempt all questions)					
Q. No.		Marks	СО			
1.	Estimate the missing figures in the following table: x 1 2 3 4 5	[4]	CO1			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
2.	Establish the operator relation $\Delta - \nabla \equiv \Delta \nabla$, where Δ and ∇ denote the Newton forward and Backward operators respectively.	[4]	CO1			
3.	Find the value of $(17)^{\frac{1}{3}}$ after four iteration, considering the initial interval as [2,3] by Bisection method.	[4]	CO2			
4.	Decompose the matrix $A = \begin{bmatrix} 2 & 3 \\ 6 & 3 \end{bmatrix}$ in "LU" form by Crout's decomposition method.	[4]	CO2			
5.	Classify the partial differential equation $a^2 u_{xx} = u_{tt}$, where <i>a</i> is constant.	[4]	CO3			
SECTION B						
(Q6-Q8 are compulsory and Q9 has internal choice)						
6.	Let a function $f(x)$ be known for $(n+1)$ arguments, namely $x_0, x_1, x_2,, x_n$, which are not necessarily equi-spaced, and $y_j = f(x_j)$, for $j = 0, 1, 2,, n$ be the corresponding entries. Derive Lagrange interpolation formula to construct an approximate polynomial $L(x)$ of degree less than equal to n which satisfies the conditions $L(x_j) = f(x_j) = y_j$, for $j = 0, 1, 2,, n$.	10	CO1			
7.	Let x_0 be an initial approximation of the root of the equation $f(x)=0$, where $f(x)$ is	10	CO2			

	differentiable at $x=x_0$. Derive the first approximate root x_1 by Newton-Raphson method. Hence find the first approximate root of the equation $2x+\log_{10}x-7=0$,		
8.	considering $x_0=3.5$.Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{dy}{dx} = -ky$, where $k = 0.01$.Given that $x_0=0$ and $y_0=100$. Determine how much substance will remain at the moment $x=100$, using Modified Euler's method with the step-length $h=50$.	10	CO3
9.	Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Jacobi method to evaluate an approximate solution, taking the initial approximation as $x_1^{(0)} = 1, x_2^{(0)} = 0, x_3^{(0)} = 1$. Perform three iterations. $x_1 + 5x_2 + 3x_3 = 28$ $12x_1 + 3x_2 - 5x_3 = 1$ $3x_1 + 7x_2 + 13x_3 = 76$. OR Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then using Gauss-Seidal method, solve the following system of equations starting with initial solution as $x_1^{(0)} = \frac{9}{5}, x_2^{(0)} = \frac{4}{5}, x_3^{(0)} = \frac{6}{5}$. Perform three iterations. $-x_1 + 5x_2 - x_3 = 4$ $5x_1 - x_2 = 9$ $-x_2 + 5x_3 = -6$.	10	CO2
	SECTION-C (Q10 is compulsory; Q11 has two parts, Q11.A and Q11.B, both have internal c	hoices)	
10.A	Evaluate the integration $\int_{0}^{\frac{\pi}{2}} \sqrt{1-k\sin^{2}\phi} d\phi$, $k=0.162$, by Simpson's $\frac{1}{3}$ rule, dividing the interval $0 \le \phi \le \frac{\pi}{2}$ into six equal subintervals.	10	CO1
10.B	Consider a matrix $A = \begin{bmatrix} 4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26 \end{bmatrix}$. i. Is it possible to find LU-decomposition for the matrix A in form of $A = LL^T$, where L is a lower triangular matrix, by Cholesky method? ii. If yes, decompose the matrix in form of $A = LL^T$. iii. Hence, find the solution of the following system by Cholesky method. $4 x_1 + 2 x_2 + 6 x_3 = 16$ $2 x_1 + 82 x_2 + 39 x_3 = 206$	10	CO2

	$6x_1 + 39x_2 + 26x_3 = 113$		
11.A	Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h=0.1$ for the differential equation $\frac{dy}{dx} = x^2 + y^2,$ with the initial condition $y(1)=1.5$. OR Solve the Poisson's equation $u_{xx}+u_{yy}=-10(x^2+y^2+10)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length 1. Perform three iterations by Gauss Seidal method to solve the linear equations in u_{xx} .	10	CO3
11.B	Solve $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$ with the conditions $u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{xx} = 16u_t, 0 < x < 1, t > 0$, given that $u(x,0) = 0, u(0,t) = 0, u(1,t) = 50t$. Compute u for two steps in t direction taking $h = \frac{1}{4}$.	10	CO3

*****GOOD LUCK*****