

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme: B. Tech. (CE+RP, APE UP, APE GAS, GSE, GIE, Mining, FSE)

Course Name: Mathematics I

Max. Marks : 100

Course Code: MATH 1010 Duration : 3 Hrs.

No. of page/s: 02

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); all questions from **Section B** (each carrying 8 marks) and all questions from **Section C** (carrying 20 marks).

Section A (Attempt all questions)				
1.	If $y = \sin nx + \cos nx$, prove that $\frac{d^r y}{dx^r} = n^r [1 + (-1)^r \sin 2nx]^{\frac{1}{2}}$.	[4]	CO2	
2.	If 4, -7 and 3 are the Eigen values of a matrix $[A]_{3\times3}$, then find the trace and the determinant of the matrix.	[4]	CO1	
3.	Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point $(1, 2, -1)$.	[4]	CO3	
4.	Find the divergence and curl of the vector $\vec{V} = xyz \hat{\imath} + 3x^2y \hat{\jmath} + (xz^2 - y^2z)\hat{k}$.	[4]	CO3	
5.	Find the coefficient a_0 for $f(x) = \sin^5 x$ from $x = -\pi$ to $x = \pi$.	[4]	CO4	
SECTION B (Q6-Q8 are compulsory. Q9 and Q10 have internal choices)				
6.	Using Cayley-Hamilton Theorem find the inverse of $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.	[8]	CO1	
7.	Taking vertical strip, evaluate $\iint_R f(x,y) dx dy$ over the rectangle $R = [0,1;0,1]$ where $f(x,y) = \begin{cases} x+y, & \text{if } x^2 < y < 2x^2 \\ 0, & \text{otherwise} \end{cases}$.	[8]	CO2	
8.	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$ by changing into polar coordinates.	[8]	CO2	

	Evaluate $\iint_R x^2 dx dy$, where R is the region in the first quadrant bounded by		
	xy = 16, $x = y$, $y = 0$ and $x = 8$.		
9.		[8]	CO2
	Evaluate $\int_0^1 \int_0^{\sqrt{(1-x^2)}} \int_0^{\sqrt{(1-x^2-y^2)}} \frac{1}{\sqrt{(1-x^2-y^2-z^2)}} dz dy dx.$ Show that the force field \vec{F} given by $\vec{F} = 2xyz^2 \hat{\imath} + (x^2z^2 + z\cos yz)\hat{\jmath} + (x^2z$		
	Show that the force field \vec{F} given by $\vec{F} = 2xyz^2 \hat{\imath} + (x^2z^2 + z\cos yz)\hat{\jmath} + (2x^2yz + y\cos yz)\hat{k}$ is irrotational. Find the scalar potential and the work done by \vec{F} from any path from $(0,0,1)$ to $\left(1,\frac{\pi}{4},2\right)$.		
10.	OR	[8]	CO3
	Using Green's theorem, evaluate $\int_C (x^2ydx + x^2dy)$ where C is the boundary described counter clockwise of the triangle with vertices $(0,0)$, $(1,0)$, $(1,1)$.		
	SECTION C		
(Q11 is compulsory. Q12A and Q12B have internal choices)			
11.A	Evaluate $\iint_S \vec{A} \cdot \hat{n} dS$, where $\vec{A} = z \hat{i} + x \hat{j} - 3y^2 z \hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between $z = 0$ and $z = 5$.	[10]	CO3
11.B	Obtain the Fourier series of to represent $f(x) = x^2$, $-\pi < x < \pi$. Sketch the graph of $f(x)$.	[10]	CO4
12.A	Apply Green's theorem to evaluate $\int_C \left[(2x^2 - y^2) dx + (x^2 + y^2) dy \right]$ where C is the boundary of the area enclosed by the x axis and the upper half of the circle $x^2 + y^2 = a^2$		
	OR	[10]	CO3
	Show that $\vec{F} = (2xy + z^3)\hat{\imath} + x^2\hat{\jmath} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential. Find also the work done in moving an object in this field from $(1,2,-1)$ to $(3,1,4)$.		
	Find the Fourier series to represent the function $f(x)$ given by		
12.B	$f(x) = \begin{cases} x & for 0 \le x \le \pi \\ 2\pi - x & for \pi \le x \le 2\pi \end{cases}$		
	OR Test the convergence of the following series:	[10]	CO4
	Test the convergence of the following series:		
	(i) $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$ (ii) $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \dots \infty$		
	(ii) $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \dots \infty$		

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme: B. Tech. (CE+RP, APE UP, APE GAS, GSE, GIE, Mining, FSE)

Course Name: Mathematics I

Semester: I

Max. Marks : 100

Course Code: MATH 1010 Duration : 3 Hrs.

No. of page/s: 02

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); all questions from **Section B** (each carrying 8 marks) and all questions from **Section C** (carrying 20 marks).

Section A (Attempt all questions)				
1.	If $y = \sqrt{(x+a)}$, find $\frac{d^n y}{dx^n}$.	[4]	CO2	
2.	Obtain the Eigen values of A^3 where $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$.	[4]	CO1	
3.	Find a unit vector normal to the surface $x^2y + 2xz = 4$ at the point $(2, -2, 3)$.	[4]	CO3	
4.	If $\vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$, find $\nabla \cdot \vec{r}$ and $\nabla \times \vec{r}$.	[4]	соз	
5.	Find the coefficient a_0 for $f(x) = \sin^3 x \cos^2 x$ from $x = -\pi$ to $x = \pi$.	[4]	CO4	
SECTION B (Q6-Q8 are compulsory. Q9 and Q10 have internal choices)				
6.	Employing elementary row transformations, find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	[8]	CO1	
7.	Evaluate $\iint_R e^{x+y} dx dy$, where <i>R</i> is the region which lies between two squares of sides 2 and 4 with center at the origin and sides parallel to the axes.	[8]	CO2	
8.	Evaluate $\int_0^2 \int_0^{\sqrt{(2x-x^2)}} \frac{xdydx}{\sqrt{(x^2+y^2)}}$ by changing to polar coordinates.	[8]	CO2	

9.	Using the transformation $x-y=u$ and $x+y=v$, evaluate $\iint_R \sin\left(\frac{x-y}{x+y}\right) dx dy$, where R is bounded by the coordinate axes and $x+y=1$ in first quadrant. \mathbf{OR} Evaluate $\int_0^4 \int_0^{2\sqrt{z}} \int_0^{\sqrt{(4z-x^2)}} dy dx dz$	[8]	CO2
10.	Show that the vector field \vec{F} given by $\vec{F} = (x^2 - yz)\hat{\imath} + (y^2 - zx)\hat{\jmath} + (z^2 - xy)\hat{k}$ is irrotational. Find the scalar potential. OR Evaluate $\int_C 2xyz^2dx + (x^2z^2 + z\cos yz)dy + (2x^2yz + y\cos yz)dz$ where C is any path from $(0,0,1)$ to $\left(1,\frac{\pi}{4},2\right)$.	[8]	CO3
SECTION C (Q11 is compulsory. Q12A and Q12B have internal choices)			
11.A	Evaluate $\iint_S \vec{A} \cdot \hat{n} dS$, where $\vec{A} = (x + y^2)\hat{\imath} - 2x\hat{\jmath} + 2yz\hat{k}$ and S is the surface of the plane $2x + y + 2z = 6$ in the first octant.	[10]	CO3
11.B	Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi - x)^2$ in the interval $0 \le x \le 2\pi$.	[10]	CO4
12.A	Evaluate $\int_C \left[(y - \sin x) dx + \cos x dy \right]$ where C is the triangle formed by $y = 0$, $x = \frac{\pi}{2}, y = \frac{2}{\pi}x$. OR Using Green's theorem, evaluate $\int_C (x^2ydx + x^2dy)$ where C is the boundary described counter clockwise of the triangle with vertices $(0,0), (1,0), (1,1)$.	[10]	CO3
12B.	Find the Fourier Series for the function $f(x) = x + x^2, -\pi < x < \pi$. OR Expand $f(x) = x$ as half range (i) <i>sine</i> series in $0 < x < 2$, (ii) <i>cosine</i> series in $0 < x < 2$.	[10]	CO4