UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme: B. Tech. (CE+RP, APE UP, APE GAS, GSE, GIE, Mining, FSE)
Course Name: Mathematics I
Course Code: MATH 1010

Semester: I
Max. Marks : 100
Duration : 3 Hrs.

No. of page/s: 02

Instructions:

Attempt all questions from Section A (each carrying 4 marks); all questions from Section \mathbf{B} (each carrying 8 marks) and all questions from Section C (carrying 20 marks).

Section A(Attempt all questions)			
1.	If $y=\sin n x+\cos n x$, prove that $\frac{d^{r} y}{d x^{r}}=n^{r}\left[1+(-1)^{r} \sin 2 n x\right]^{\frac{1}{2}}$.	[4]	CO2
2.	If 4, -7 and 3 are the Eigen values of a matrix $[A]_{3 \times 3}$, then find the trace and the determinant of the matrix.	[4]	CO1
3.	Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point ($1,2,-1$).	[4]	$\mathrm{CO3}$
4.	Find the divergence and curl of the vector $\vec{V}=x y z \hat{\imath}+3 x^{2} y \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k}$.	[4]	$\mathrm{CO3}$
5.	Find the coefficient a_{0} for $f(x)=\sin ^{5} x$ from $x=-\pi$ to $x=\pi$.	[4]	CO4
SECTION B (Q6-Q8 are compulsory. Q9 and Q10 have internal choices)			
6.	Using Cayley-Hamilton Theorem find the inverse of $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$.	[8]	CO1
7.	Taking vertical strip, evaluate $\iint_{R} f(x, y) d x d y$ over the rectangle $R=[0,1 ; 0,1]$ where $f(x, y)=\left\{\begin{array}{c}x+y, \text { if } x^{2}<y<2 x^{2} \\ 0, \text { otherwise }\end{array}\right.$.	[8]	CO 2
8.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x$ by changing into polar coordinates.	[8]	CO2

9.	Evaluate $\iint_{R} x^{2} d x d y$, where R is the region in the first quadrant bounded by $x y=16, x=y, y=0$ and $x=8$. OR Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{\left(1-x^{2}\right)}} \int_{0}^{\sqrt{\left(1-x^{2}-y^{2}\right)}} \frac{1}{\sqrt{\left(1-x^{2}-y^{2}-z^{2}\right)}} d z d y d x$.	[8]	CO 2
10.	Show that the force field \vec{F} given by $\vec{F}=2 x y z^{2} \hat{\imath}+\left(x^{2} z^{2}+z \cos y z\right) \hat{\jmath}+$ $\left(2 x^{2} y z+y \cos y z\right) \hat{k}$ is irrotational. Find the scalar potential and the work done by \vec{F} from any path from $(0,0,1)$ to $\left(1, \frac{\pi}{4}, 2\right)$. OR Using Green's theorem, evaluate $\int_{C}\left(x^{2} y d x+x^{2} d y\right)$ where C is the boundary described counter clockwise of the triangle with vertices $(0,0),(1,0),(1,1)$.	[8]	CO 3
SECTION C(Q11 is compulsory. Q12A and Q12B have internal choices)			
11.A	Evaluate $\iint_{S} \vec{A} . \hat{n} d S$, where $\vec{A}=z \hat{\imath}+x \hat{\jmath}-3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.	[10]	CO 3
11.B	Obtain the Fourier series of to represent $f(x)=x^{2},-\pi<x<\pi$. Sketch the graph of $f(x)$.	[10]	$\mathrm{CO4}$
12.A	Apply Green's theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the boundary of the area enclosed by the x axis and the upper half of the circle $x^{2}+y^{2}=a^{2}$ OR Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential. Find also the work done in moving an object in this field from $(1,2,-1)$ to $(3,1,4)$.	[10]	CO 3
12.B	Find the Fourier series to represent the function $f(x)$ given by $f(x)=\left\{\begin{array}{c}x \quad \text { for } \quad 0 \leq x \leq \pi \\ 2 \pi-x \text { for } \pi \leq x \leq 2 \pi\end{array}\right.$. OR Test the convergence of the following series: (i) $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \ldots \ldots \infty$ (ii) $\frac{1}{4.7 .10}+\frac{4}{7.10 .13}+\frac{9}{10.13 .16}+\ldots \ldots \ldots \infty$	[10]	$\mathrm{CO4}$

9.	Using the transformation $x-y=u$ and $x+y=v$, evaluate $\iint_{R} \sin \left(\frac{x-y}{x+y}\right) d x d y$, where R is bounded by the coordinate axes and $x+y=1$ in first quadrant. OR Evaluate $\int_{0}^{4} \int_{0}^{2 \sqrt{z}} \int_{0}^{\sqrt{\left(4 z-x^{2}\right)}} d y d x d z$	[8]	CO 2
10.	Show that the vector field \vec{F} given by $\vec{F}=\left(x^{2}-y z\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}$ is irrotational. Find the scalar potential. OR Evaluate $\int_{C} 2 x y z^{2} d x+\left(x^{2} z^{2}+z \cos y z\right) d y+\left(2 x^{2} y z+y \cos y z\right) d z$ where C is any path from $(0,0,1)$ to $\left(1, \frac{\pi}{4}, 2\right)$.	[8]	CO 3
SECTION C(Q11 is compulsory. Q12A and Q12B have internal choices)			
11.A	Evaluate $\iint_{S} \vec{A} . \hat{n} d S$, where $\vec{A}=\left(x+y^{2}\right) \hat{\imath}-2 x \hat{\jmath}+2 y z \hat{k}$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant.	[10]	CO 3
11.B	Obtain the Fourier series to represent $f(x)=\frac{1}{4}(\pi-x)^{2}$ in the interval $0 \leq x \leq 2 \pi$.	[10]	CO4
12.A	Evaluate $\int_{C}[(y-\sin x) d x+\cos x d y]$ where C is the triangle formed by $y=0$, $x=\frac{\pi}{2}, y=\frac{2}{\pi} x$. OR Using Green's theorem, evaluate $\int_{C}\left(x^{2} y d x+x^{2} d y\right)$ where C is the boundary described counter clockwise of the triangle with vertices $(0,0),(1,0),(1,1)$.	[10]	CO 3
12B.	Find the Fourier Series for the function $f(x)=x+x^{2},-\pi<x<\pi$. OR Expand $f(x)=x$ as half range (i) sine series in $0<x<2$, (ii) cosine series in $0<x<2$.	[10]	CO 4

