

Enrolment No:

Semester: I

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B.Tech. (CivilE-Sz-Infra)

Course Name : Mathematics I Time : 03 hrs

Course Code : MATH 1008 Max. Marks : 100

Nos. of page(s) : 2

Instructions: All questions are compulsory.

SECTION A

S. No.		Marks	CO
Q1	Show that two vectors are linearly dependent if and only if one vector is scalar multiple of the other vector.	4	CO1
Q2	Test the consistency for solution of the following system of equations. x+y+z=3 x+2y+3z=4 x+4y+9z=6	4	CO1
Q3	Find the volume of a rectangular parallelopiped with length, width and height as a , b and c , respectively.	4	CO3
Q4	Test for the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$	4	CO4
Q5	Find the interval of convergence for the power series of $log(1+x)$.	4	CO4
	SECTION B		
Q6	Reduce the quadratic form $3x^2+5y^2+3z^2-2yz+2zx-2xy$ to the canonical form and specify the matrix of transformation.	8	CO1
Q7	Show that $\Gamma(n+1) = n\Gamma n$ for $n \in R$, $n > 0$ and hence show that for a natural number, $n \in R$, $\Gamma(n) = (n-1)!$.	8	CO2
Q8	Find the maximum value of $x^m y^n z^p$, when $x+y+z=a$ with m, n, p, a as constants.	8	CO2
Q9	If x increases at the rate of $2 cm/sec$ at the instant when $x=3 cm$ and $y=1 cm$, at what rate must y be changing in order that the function $2 xy - 3 x^2 y$ shall be neither increasing nor decreasing? OR If $x = r \cos \theta$ and $y = r \sin \theta$, verify that $\frac{\partial (x,y)}{\partial (r,\theta)} \frac{\partial (r,\theta)}{\partial (x,y)} = 1$.	8	CO2

Q10	Evaluate the following integral over a parallelogram in the xy-plane with vertices $(1,0),(3,1),(2,2),(0,1)$ using the transformation $u=x+y$ and $v=x-2y$. $\iint (x+y)^2 dx dy$ Change the order of the integration in the following and then integrate it.	8	CO3
	$\int_{0}^{a} \int_{0}^{\frac{b}{a}\sqrt{a^2-x^2}} x^2 dy dx$		
	SECTION-C		
Q11A	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z)dy dx dz.$	10	CO3
Q11B	Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.	10	CO4
Q12A	A plate of the form of a quadrant of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ is of small but varying thickness, the thickness at any point being proportional to the product of the distances of that point from the major and the minor axes. Find the co-ordinates of the centre of gravity of the plane. OR Find the mass of a lamina in the form of the cardioid $r = a(1 + \cos \theta)$ whose density at any point varies as the square of its distance from the initial line.	10	CO3
Q12B	Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \infty$ is convergent for $p > 1$ and divergent for $p \le 1$. OR Expand the function $f(x)$ given below as the Fourier cosine series. $f(x) = \begin{cases} kx, & \text{if } 0 < x < \frac{l}{2} \\ k(l-x), & \text{if } \frac{1}{2} < x < 1 \end{cases}$	10	CO4

Name:

S. No.

Enrolment No:

Semester: I

Time: 03 hrs

Max. Marks: 100

Marks

 \mathbf{CO}

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B.Tech. (CivilE-Sz-Infra)

Course Name : Mathematics I

Course Code : MATH 1008

Nos. of page(s)

Instructions: All questions are compulsory.

SECTION A

Q1	Show that the set of vectors $X = [1, 2, -3, 4], Y = [3, -1, 2, 1],$ Z = [1, -5, 8, -7] is linearly independent.	4	CO1
Q2	Define positive definite and negative definite real quadratic forms. Classify the real quadratic form, $X'AX$, as positive or negative definite, where $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$.	4	CO1
Q3	Find area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using double integral.	4	CO3
Q4	Test for the convergence of the series $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \dots \infty$	4	CO4
Q5	Express $f(x)=x$ as half-range sine series in $0 < x < 2$.	4	CO4
	SECTION B		
Q6	Find the rank of the following matrix by reducing it to the Echelon form. [1 2 3 2] [2 3 5 1] [1 3 4 5]	8	CO1
Q7	Let $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_{n-1}}{2} + a_n = 0$. Show that the function $a_0 x^n + a_1 x^{n-1} + \dots + a_n$ vanishes at least once in $(0,1)$.	8	CO2
Q8	Find that maximum and minimum of $\sin x \sin y \sin(x+y)$; $0 < x, y < \pi$.	8	CO2
Q9	If $u = f(x, y)$, where $x = r \cos \theta$ and $y = r \sin \theta$, prove that $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2$	8	CO2
	OR		

	If $x = r \cos \theta$ and $y = r \sin \theta$, verify that $\frac{\partial(x,y)}{\partial(r,\theta)} \frac{\partial(r,\theta)}{\partial(x,y)} = 1$		
Q10	Change the order of the integration in the following and then integrate it. $\int_{0}^{a} \int_{x^{2}/2}^{2a-x} xy dy dx$	8	CO3
	OR	O	
	Transform the following double integral in polar coordinates and then evaluate. it. $\int_{0}^{a} \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} \frac{1}{\sqrt{a^2-x^2-y^2}} dy dx$		
	SECTION-C		
	SECTION-C		
Q11A	Evaluate the following triple integral. $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz dz dy dx$	10	CO3
Q11B	Find a Fourier series to represent $x-x^2$ from $x=-\pi$ to $x=\pi$.	10	CO4
Q12A	Find the mass of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. The tetrahedron has the variable density $\rho = kxyz$. OR A solid is in the form of the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. The density ρ at any point (x, y, z) is given by $\rho = \mu xyz$, where μ is a constant. Find the coordinates of the centre of gravity of the solid.	10	CO3
Q12B	Expand the function $f(x)$ given below as the Fourier <i>sine</i> series. $f(x) = \begin{cases} \frac{1}{4} - x, & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$ OR Test for the convergence of the following series.	10	CO4

$\frac{1}{2} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \infty$	
--	--