| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q1 | Show that two vectors are linearly dependent if and only if one vector is scalar multiple of the other vector. | 4 | CO1 |
| Q2 | Test the consistency for solution of the following system of equations. $\begin{aligned} & x+y+z=3 \\ & x+2 y+3 z=4 \\ & x+4 y+9 z=6 \\ & \hline \end{aligned}$ | 4 | CO1 |
| Q3 | Find the volume of a rectangular parallelopiped with length, width and height as $a, b$ and $c$, respectively. | 4 | CO3 |
| Q4 | Test for the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \infty$ | 4 | CO4 |
| Q5 | Find the interval of convergence for the power series of $\log (1+x)$. | 4 | CO4 |
| SECTION B |  |  |  |
| Q6 | Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form and specify the matrix of transformation. | 8 | CO1 |
| Q7 | Show that $\Gamma(n+1)=n \Gamma n$ for $n \in R, n>0$ and hence show that for a natural number, $n$ , $\Gamma n=(n-1)$ !. | 8 | CO2 |
| Q8 | Find the maximum value of $x^{m} y^{n} z^{p}$, when $x+y+z=a$ with $m, n, p, a$ as constants. | 8 | CO2 |
| Q9 | If $x$ increases at the rate of $2 \mathrm{~cm} /$ sec at the instant when $x=3 \mathrm{~cm}$ and $y=1 \mathrm{~cm}$., at what rate must $y$ be changing in order that the function $2 x y-3 x^{2} y$ shall be neither increasing nor decreasing? <br> OR <br> If $x=r \cos \theta$ and $y=r \sin \theta$, verify that $\frac{\partial(x, y)}{\partial(r, \theta)} \frac{\partial(r, \theta)}{\partial(x, y)}=1$. | 8 | CO2 |


| Q10 | Evaluate the following integral over a parallelogram in the xy-plane with vertices $(1,0),(3,1),(2,2),(0,1)$ using the transformation $u=x+y$ and $v=x-2 y$. $\iint(x+y)^{2} d x d y$ <br> OR <br> Change the order of the integration in the following and then integrate it. $\int_{0}^{a} \int_{0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} x^{2} d y d x$ | 8 | CO 3 |
| :---: | :---: | :---: | :---: |
| SECTION-C |  |  |  |
| Q11A | Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$. | 10 | CO3 |
| Q11B | Obtain the Fourier series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$. | 10 | CO4 |
| Q12A | A plate of the form of a quadrant of the ellipse $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$ is of small but varying thickness, the thickness at any point being proportional to the product of the distances of that point from the major and the minor axes. Find the co-ordinates of the centre of gravity of the plane. <br> OR <br> Find the mass of a lamina in the form of the cardioid $r=a(1+\cos \theta)$ whose density at any point varies as the square of its distance from the initial line. | 10 | CO |
| Q12B | Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots+\infty$ <br> is convergent for $p>1$ and divergent for $p \leq 1$. <br> OR <br> Expand the function $f(x)$ given below as the Fourier cosine series. $f(x)=\left\{\begin{array}{c} k x, \text { if } 0<x<\frac{1}{2} \\ k(l-x), \text { if } \frac{1}{2}<x<1 \end{array}\right.$ | 10 | CO4 |



|  | If $x=r \cos \theta$ and $y=r \sin \theta$, verify that $\frac{\partial(x, y)}{\partial(r, \theta)} \frac{\partial(r, \theta)}{\partial(x, y)}=1$ |  |  |
| :---: | :---: | :---: | :---: |
| Q10 | Change the order of the integration in the following and then integrate it. $\int_{0}^{a} \int_{x^{2} / 2}^{2 a-x} x y d y d x$ <br> OR <br> Transform the following double integral in polar coordinates and then evaluate. it. $\int_{0}^{a} \int_{\sqrt{a x-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{1}{\sqrt{a^{2}-x^{2}-y^{2}}} d y d x$ | 8 | CO3 |
| SECTION-C |  |  |  |
| Q11A | Evaluate the following triple integral. $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{1-x^{2}-y^{2}} x y z d z d y d x$ | 10 | CO3 |
| Q11B | Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$. | 10 | CO4 |
| Q12A | Find the mass of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. The tetrahedron has the variable density $\rho=k x y z$. <br> OR <br> A solid is in the form of the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. The density $\rho$ at any point $(x, y, z)$ is given by $\rho=\mu x y z$, where $\mu$ is a constant. Find the coordinates of the centre of gravity of the solid. | 10 | CO3 |
| Q12B | Expand the function $f(x)$ given below as the Fourier sine series. $f(x)=\left\{\begin{array}{l} \frac{1}{4}-x, \text { if } 0<x<\frac{1}{2} \\ x-\frac{3}{4}, \text { if } \frac{1}{2}<x<1 \end{array}\right.$ <br> OR <br> Test for the convergence of the following series. | 10 | CO4 |

$$
\begin{array}{|l|l|}
\hline \frac{1}{2}+\frac{x^{2}}{3 \sqrt{ } 2}+\frac{x^{4}}{4 \sqrt{ } 3}+\frac{x^{6}}{5 \sqrt{ } 4}+\ldots \infty & \\
\hline
\end{array}
$$

