Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Course: MATH 1006-Mathematics Programme: BCA Semester: I Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).			
Section A(Attempt all questions)			
1.	Solve the following equation after reducing it into quadratic equation $\frac{1}{x^{2}}-\frac{3}{x}=4$.	[4]	CO1
2.	Evaluate the value of x, y, z and w if $3\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 5 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}6 & x+y \\ z+w & 5\end{array}\right]$	[4]	CO2
3.		[4]	$\mathrm{CO3}$
4.	Evaluate the integral $\int\left(\frac{1-\cos 2 x}{\sin 2 x}\right) d x$.	[4]	CO3
5.	Find the number of permutations of all the letters of the word (i) Committee (ii) Engineering.	[4]	CO4
SECTION B(Q6-Q8 are compulsory and Q9-10 has internal choice)			
6.	Prove that $\left\|\begin{array}{ccc}a & b & c \\ b+c & c+a & a+b \\ a^{2} & b^{2} & c^{2}\end{array}\right\|=-(a-b)(b-c)(c-a)(a+b+c)$.	[8]	CO1
7.	Express $\left[\begin{array}{ccc}3 & 5 & -7 \\ -8 & 11 & 4 \\ 13 & -14 & 6\end{array}\right]$ as the sum of a lower triangular matrix with zero leading diagonal and an upper triangular matrix.	[8]	CO1

8.	Determine the inverse of the following matrix $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4\end{array}\right]$	[8]	CO2
9.	Investigate the values of λ and μ so that the equations $2 x+3 y+5 z=9 ; 7 x+3 y-2 z=8 ; 2 x+3 y+\lambda z=\mu$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions. OR Investigate the values of m and n so that the equations $x+2 y+z=4 ; x+y+z=6 ; x-2 y+m z=n$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.	[8]	CO2
10.	Evaluate ${ }^{\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-x)} .}$ OR Evaluate the integral $\int \frac{x+1}{2 x^{2}+3 x+1} d x$	[8]	CO 3
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Find the differential coefficient of (i) $e^{\sin x^{2}}$ (ii) $\log \sin x^{2}$ with respect to x.	[10]	CO 3
11.B	How many words can be formed with the help of 3 consonants and 2 vowels, such that no two consonants are adjacent?	[10]	CO4
12.A	Evaluate the integral $\int \frac{1}{(x-1)(x+2)(x+7)} d x$. OR Evaluate the integral $\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x$.	[10]	$\mathrm{CO3}$
12.B	There are 3 true coins and 1 false coin with head on both sides. A coin is chosen at random and tossed 4 times. If head occurs all the 4 times, what is the probability that the false coin has been chosen and used? OR A shipment of 6 television sets contains 2 defective sets. A hotel makes a random purchase of 3 of the sets. If X is the number of defective sets purchased by the hotel, find the probability distribution of X.	[10]	$\mathrm{CO4}$

Name: Enrolment No:		- UPES		
Time: 03 hrs . Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).		TROLEUM AND ENERGY STUDIES Examination, December 2018 rrying 4 marks); attempt all questions from \mathbf{S} Section C (each carrying 20 marks).		
Section A(Attempt all questions)				
1.	Determine the solution of the following equation $t^{1 / 2}+5 t^{1 / 4}+7=0$.	equation after reducing it into quadratic	[4]	CO1
2.	Determine the value of x, y, a and b if	$\left[\begin{array}{cc}2 x+4 y & 2 x-y \\ 2 a+b & 3 a-2 b\end{array}\right]=\left[\begin{array}{cc}3 & 11 \\ 3 & 8\end{array}\right]$.	[4]	CO2
3.	If $y=\cos ^{-1}\left(1-x^{2}\right)$, then find $\frac{d y}{d x}$		[4]	CO3
4.	Evaluate the following integral $\int \frac{1}{\sqrt{a x^{2}-b x}}$	$\frac{1}{-b x+c} d x$.	[4]	CO3
5.	A dice is thrown three times. Events A on third dice, $B=$ Getting 6 on the first probability of A given that B has already	and B are defined as below: $A=$ Getting 4 5 on the second throw. Determine the y occurred.	[4]	CO4
SECTION B(Q6-Q8 are compulsory and Q9-10 has internal choice)				
6.	Prove that $\left\|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right\|$	$=2 a b c(a+b+c)^{3}$.	[8]	CO1
7.	Prove that $\left\|\begin{array}{lll}1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3}\end{array}\right\|=(a-b)(b-c)(c-$	$a)(a+b+c)$	[8]	CO1

8.	Determine the inverse of the following matrix $A=\left[\begin{array}{ccc}2 & 3 & 5 \\ 1 & 5 & 3 \\ 2 & 3 & 7\end{array}\right]$	[8]	CO2
9.	Investigate the values of λ and μ $\begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 2 x+3 y+\lambda z=\mu \end{aligned}$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions. OR Investigate the values of m and n so that the equations $\begin{aligned} & x+2 y+z=4 \\ & x+y+z=6 \\ & x-2 y+m z=n \end{aligned}$ have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.	[8]	CO2
10.	Differentiate $\tan ^{-1}\left\{\frac{\sqrt{1-x^{2}}}{x}\right\}$ with respect to $\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$. OR Evaluate the following integral $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\sin x}} d x$.	[8]	CO3
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Evaluate ${ }^{\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-x)}}$	[10]	CO3
11.B	A bag contains 8 white and 6 red balls. Find the probability of drawing two balls of the same colour.	[10]	CO4
12.A	Evaluate the following integral $\int \frac{1}{(x-1)(x+2)^{3}} d x$. OR Evaluate the following integral $\int_{0}^{\infty} \frac{1}{(x+1)\left(x^{2}+4\right)} d x$.	[10]	CO3
12.B	Three students A, B, C write an entrance examination. Their chances of passing $1 / 2,1 / 3,1 / 4$ respectively. Find the probability that atleast one of them passes.	[10]	CO4

OR

Four boxes A, B, C and D contain 500, 300, 200 and 100 fuses respectively. The percentages of fuses in the boxes which are defective are $3 \%, 2 \%, 1 \%$ and 0.5% respectively. One fuse is selected at random arbitrarily from one of the boxes. It is found to be a defective fuse. Determine the probability that it has come from the box D.

