Name: Enrolment No:			
Course: Mathematics-I (MATH-1002) Semester: I Programme: All SOCS Branches Time: 03 hrs. No. of pages: 2 Max. Marks: 100 Instructions: All sections are compulsory			
SECTION A Attempt all Questions			
S. No.		Marks	CO
Q 1	Show that the contrapositive and conditional propositions are logically equivalent.	4	CO2
Q2	Find the values of k, for which the rank of matrix $A=\left[\begin{array}{ccc}2 & 4 & 1 \\ k & 2 & 4 \\ 1 & 2 & k\end{array}\right]$ is 2 .	4	CO 3
Q3	Let $G=\{-1,1,-i, i\}$ be a cyclic group under multiplication. Find the all generators of G.	4	CO4
Q4	Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x y z d z d y d x$	4	CO1
Q5	If $A=\left[\begin{array}{ll}4 & -5 \\ 1 & -2\end{array}\right]$, then find the Eigen values of matrix $B=A^{3}+2 A+I$.	4	CO3
SECTION BAttempt all Questions			
Q6	For what values of k, the given system of linear equations $3 x+y+z=0$ $x+(k-2) y+2 z=0,2 x+y+(k-3) z=0$ has non trivial solution. Also find the solution for $k=4$.	10	CO 3
Q7	Find principal disjunctive normal and principal conjunctive normal forms of $A \cong(p \wedge q) \vee(\sim p \wedge r) \vee(q \wedge r)$.	10	CO2
Q8	Consider the following argument: If Roli has completed B.Tech, then she is assured of a good job. If Roli is assured of a good job, then she is happy. Roli is not happy. Therefore, Roli has not completed B.Tech. Is the given argument valid?	10	$\mathrm{CO2}$
Q9	Show that the set $G=\{x+y \sqrt{3} ; x, y \in \mathbb{Q}\}$ is an abelian group with respect to addition. OR Show that the set $G=\{0,1,2,3,4,5\}$ is an abelian group with respect to addition modulo 5.	10	$\mathrm{CO4}$

SECTION-C Attempt all Questions			
Q10(A)	If two operations \bullet and \circ on the set \mathbb{Z} of integers are defined as: $a \bullet b=a+b-1$ and $a \circ b=a+b-a b$. Prove that $(\mathbb{Z}, \bullet, \circ)$ is commutative ring with unity element.	10	CO4
Q10(B)	Change the order of integration of $I=\int_{0}^{a} \int_{\sqrt{a x}}^{a} \frac{y^{2} d x d y}{\sqrt{y^{4}-a^{2} x^{2}}}$ and hence evaluate.	10	CO1
Q11(A)	Let \mathbb{R}^{+}be the multiplicative group of all positive real numbers and \mathbb{R} be the additive group of all real numbers. Show that the mapping $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined as $f(x)=\log (x) \forall x \in \mathbb{R}^{+}$is an isomorphism. OR Let the set $G=\{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7. Find the order of each element with explanation.	10	CO4
Q11(B)	If $u=x+y+z, v=x^{3}+y^{3}+z^{3}-3 x y z$ and $w=x^{2}+y^{2}+z^{2}-x y-y z-z x$. Check whether u, v, w are functionally related or not. If so, find the relation between them. OR If $u=r^{n}$, where $r^{2}=x^{2}+y^{2}+z^{2}$, then prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=n(n+1) r^{n-2}$.	10	CO1

CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	:	MID		END	$\sqrt{ }$	SUPPLE	
Name of the School (Please tick, symbol is given)	:	SOE		SOCS	\checkmark	SOP	
Programme	:	B.Tech (All SOCS Branches)					
Semester	:	I					
Name of the Course	:	Mathematics-I					
Course Code	:	MATH-1002					
Name of Question Paper Setter	:	Dr Pradeep Malik					
Employee Code	:	40001183					
Mobile \& Extension	:	8979426020					
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE":							
FOR SRE DEPARTMENT							
Date of Examination			:				
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page
Model Question Paper (Blank) is on next page

Name: Enrolment No:			
Course Progra No. of Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Mathematics-I (MATH-1002) Semester: I me: All SOCS Branches Time: 03 hrs ges: 2 Max. Marks ons: All sections are compulsory		
SECTION AAttempt all Questions			
S. No.		Marks	CO
Q 1	Investigate the pair of propositions $p \Leftrightarrow q$ and $(p \Rightarrow q) \wedge(q \Rightarrow p)$ are logically equivalent or not?	4	CO2
Q2	For what values of k, the given system of linear equations $3 x+y+z=0$ $x+k y+z=0, x+y+k z=0$ has non trivial solution.	4	CO3
Q3	Find the order of each element of Klein's group $G=\{e, a, b, a b\}$, where $a^{2}=b^{2}=e, a b=b a$.	4	CO4
Q4	Find the $n^{\text {th }}$ derivative of the function $y=e^{2 x} \sin 3 x \cos x$.	4	CO1
Q5	Let $\lambda_{1}=2+i \sqrt{3}$ and $\lambda_{2}=4$ be the Eigen values of the matrix A of order 3×3. Then find the determinant and trace of the matrix A.	4	CO3
SECTION B Attempt all Questions			
Q6	Verify Caley-Hamilton theorem of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence, find the matrix B is represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$.	10	CO3
Q7	Find the principal disjunctive normal and principal conjunctive normal forms of $A \cong(p \wedge \sim(q \wedge r)) \vee(p \Rightarrow q)$.	10	CO2
Q8	Consider the following argument: If a student knows Mathematics then he does well in Computer Science. If a student does well in Computer Science, he gets handsome salary in a reputed company. A student is getting handsome salary in a reputed company. Therefore, he knows Mathematics. Is the above argument valid?	10	CO2
Q9	The set \mathbf{G} of all rational numbers other than -1 with the composition defined as $a \bullet b=a+b+a b$. Is \mathbf{G} an abelian group?	10	CO4

	OR Show that the set $G=\{1,2,3,4,5,6\}$ is an abelian group of order 6 with respect to multiplication modulo 7 .		
SECTION-C Attempt all Questions			
Q10(A)	If $G=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$. Prove that G is a commutative ring with unity element under the usual addition and multiplication of complex numbers.	10	CO4
Q10(B)	Find the volume bounded by the elliptic paraboloids $z=18-x^{2}-9 y^{2} \& z=x^{2}+9 y^{2}$.	10	CO1
Q11(A)	Define subgroup and let set $H=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): a \neq 0 ; a, b \in \mathbb{R}\right\}$ be a subset of the multiplicative group G of 2×2 non-singular matrices over \mathbb{R}. Is the given set H a subgroup of G ? OR Define the cyclic group and let the set $G=\{-1,1,-i, i\}$ is a group with respect to multiplication. Find the all generators and show that G is a cyclic group.	10	CO4
Q11(B)	Evaluate $\iiint \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$ over the positive octant of sphere $x^{2}+y^{2}+z^{2}=1$. OR A rectangular box, open at the top, is to have a volume of 32 cubic feet. Determine the dimension of the box requiring least material for its construction.	10	CO1

