Name:							
Enrolment No:							
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
Courses	End Semester Examination, December 2018 Mathematics I (MATH 1002)	r					
	Mathematics-I (MATH-1002)Semester:nme: All SOCS BranchesTime: 03 hr						
No. of p							
Instruct	ions: All sections are compulsory						
	SECTION A						
S. No.	Attempt all Questions	Marks	СО				
Q 1	Show that the contrapositive and conditional propositions are logically equivalent.	4	CO2				
Q2			02				
×-	Find the values of k for which the rank of matrix $A = \begin{bmatrix} 2 & 4 & 1 \\ k & 2 & 4 \end{bmatrix}$ is 2	4	CO2				
	Find the values of k, for which the rank of matrix $A = \begin{vmatrix} k & 2 & 4 \\ 1 & 2 & k \end{vmatrix}$ is 2.	4	CO3				
02							
Q3	Let $G = \{-1, 1, -i, i\}$ be a cyclic group under multiplication. Find the all generators	⁵ 4	CO4				
Q4	of G.						
Ϋ́	Evaluate $\iint_{0} \iint_{0} xyz dz dy dx$	4	CO1				
Q5	If $A = \begin{bmatrix} 4 & -5 \\ 1 & -2 \end{bmatrix}$, then find the Eigen values of matrix $B = A^3 + 2A + I$.	4	CO3				
SECTION B							
	Attempt all Questions						
Q6	For what values of k, the given system of linear equations $3x + y + z = 0$						
	x+(k-2)y+2z=0, $2x+y+(k-3)z=0$ has non trivial solution. Also find the	e 10	CO3				
	solution for $k = 4$.						
Q7	Find principal disjunctive normal and principal conjunctive normal forms of	10	CO2				
	$A \cong (p \land q) \lor (\sim p \land r) \lor (q \land r).$	10	02				
Q8	Consider the following argument:						
	If Roli has completed B.Tech, then she is assured of a good job. If Roli is assured of a good job, then she is happy.						
	Roli is not happy.	10	CO2				
00	Therefore, Roli has not completed B.Tech. Is the given argument valid?						
Q9	Show that the set $G = \{x + y\sqrt{3}; x, y \in \mathbb{Q}\}$ is an abelian group with respect to addition						
	OR	10	CO4				
	Show that the set $G = \{0, 1, 2, 3, 4, 5\}$ is an abelian group with respect to addition	1					
	modulo 5.						

SECTION-C Attempt all Questions					
Q10(A)	If two operations • and \circ on the set \mathbb{Z} of integers are defined as: $a \bullet b = a+b-1$ and $a \circ b = a+b-ab$. Prove that $(\mathbb{Z}, \bullet, \circ)$ is commutative ring with unity element.	10	CO4		
Q10(B)	Change the order of integration of $I = \int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^2 dx dy}{\sqrt{y^4 - a^2 x^2}}$ and hence evaluate.	10	CO1		
Q11(A)	Let \mathbb{R}^+ be the multiplicative group of all positive real numbers and \mathbb{R} be the additive group of all real numbers. Show that the mapping $f : \mathbb{R}^+ \to \mathbb{R}$ defined as $f(x) = \log(x) \ \forall x \in \mathbb{R}^+$ is an isomorphism. OR Let the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7. Find the order of each element with explanation.	10	CO4		
Q11(B)	If $u = x + y + z$, $v = x^3 + y^3 + z^3 - 3xyz$ and $w = x^2 + y^2 + z^2 - xy - yz - zx$. Check whether u, v, w are functionally related or not. If so, find the relation between them. OR If $u = r^n$, where $r^2 = x^2 + y^2 + z^2$, then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = n(n+1)r^{n-2}$.	10	CO1		

CONFIDENTIAL

Name of Examination	:	MID		END	\checkmark	SUPPLE	
(Please tick, symbol is given)							
Name of the School	:	SOE		socs	\checkmark	SOP	
(Please tick, symbol is given)							
Programme	:	B.Tech (All SOCS Bra	inches)			
Semester	:	I					
Name of the Course	Name of the Course : Mathematics-I						
Course Code	:	MATH-1002					
Name of Question Paper : Dr Pradeep Malik							
Setter							
Employee Code	:	40001183					
Mobile & Extension	:	8979426	5020				
Note: Please mention addit	tional	Statione	ery to be pr	ovided, du	iring exam	ination suc	h as
Table/Graph Sheet etc. else	e mer	ition "NC	OT APPLICA	BLE":			
FOR SRE DEPARTMENT							
Date of Examination :							
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page

Model Question Paper (Blank) is on next page

Name:					
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
	End Semester Examination, December 2018 Mathematics-I (MATH-1002) Semester:	Ι			
	nme: All SOCS BranchesTime: 03				
No. of p	0	·ks: 100			
Instruct	tions: All sections are compulsory SECTION A				
	Attempt all Questions				
S. No.	Attempt un Questions	Marks	CO		
Q 1	Investigate the pair of propositions $p \Leftrightarrow q$ and $(p \Rightarrow q) \land (q \Rightarrow p)$ are logical equivalent or not?		CO2		
Q2	For what values of k, the given system of linear equations $3x + y + z = x + ky + z = 0$, $x + y + kz = 0$ has non trivial solution.	0 4	CO3		
Q3	Find the order of each element of Klein's group $G = \{e, a, b, ab\}$, whe $a^2 = b^2 = e$, $ab = ba$.	ce 4	CO4		
Q4	Find the n^{th} derivative of the function $y = e^{2x} \sin 3x \cos x$.	4	CO1		
Q5	Let $\lambda_1 = 2 + i\sqrt{3}$ and $\lambda_2 = 4$ be the Eigen values of the matrix A of order 3×3. The				
ζ.	find the determinant and trace of the matrix A.	4	CO3		
SECTION B					
	Attempt all Questions				
Q6	Verify Caley-Hamilton theorem of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence, find the formula of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$	10 10	CO3		
	matrix <i>B</i> is represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$.				
Q7	Find the principal disjunctive normal and principal conjunctive normal forms $A \cong (p \land \sim (q \land r)) \lor (p \Longrightarrow q).$	of 10	CO2		
Q8	Consider the following argument: If a student knows Mathematics then he does well in Computer Science. If a student does well in Computer Science, he gets handsome salary in a reputed compan A student is getting handsome salary in a reputed company.	y. 10	CO2		
	Therefore, he knows Mathematics. Is the above argument valid?				
Q9	The set G of all rational numbers other than -1 with the composition defined $a \bullet b = a + b + ab$. Is G an abelian group?	^{as} 10	CO4		

	OR		
	Show that the set $G = \{1, 2, 3, 4, 5, 6\}$ is an abelian group of order 6 with respect to		
	multiplication modulo 7.		
	SECTION-C Attempt all Questions		
Q10(A)	If $G = \{a+b\sqrt{-5}: a, b \in \mathbb{Z}\}$. Prove that <i>G</i> is a commutative ring with unity element under the usual addition and multiplication of complex numbers.	10	CO4
Q10(B)	Find the volume bounded by the elliptic paraboloids $z = 18 - x^2 - 9y^2$ & $z = x^2 + 9y^2$.	10	CO1
Q11(A)	Define subgroup and let set $H = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \neq 0; a, b \in \mathbb{R} \right\}$ be a subset of the multiplicative group G of 2×2 non-singular matrices over \mathbb{R} . Is the given set H a subgroup of G ? OR Define the cyclic group and let the set $G = \{-1, 1, -i, i\}$ is a group with respect to multiplication. Find the all generators and show that G is a cyclic group.	10	CO4
Q11(B)	Evaluate $\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$ over the positive octant of sphere $x^2 + y^2 + z^2 = 1$. OR A rectangular box, open at the top, is to have a volume of 32 cubic feet. Determine the dimension of the box requiring least material for its construction.	10	CO1