Name: Enrolment No:					
UNIV	ERSITY OF PETROLEUM AND H	ENERGY STUDIES	;		
End S	Semester Examination, Decemb	er 2018			
Cours	se: Numerical Methods in Chem	ical Engineering			
Semester: V Programme: B. Tech. CE-RP (Chemical Engineering-RP) Time: 03 hrs. Instructions: Open Books and Notes, etc. Question Paper has to be returned at the end of the exam					
		ECTION A			
S. No.				Marks	CO
Q 1	Statement of question NIL (open book e	xam)		X	CO1
	S	ECTION B			
Q	Statement of question NIL (open book e	kam)		X	CO4
	SECTION-C: <u>ALL THREE QUEST</u>	IONS ARE COMPUL	SORY (Total 100 M	larks)	
Q1	Consider the following ODE-BVP: $\frac{d^2 y}{dx^2} + 2 yx = xy \int_{x=0}^{1} (y^2 e^x) dx; 0 = x$ with $y(x = 0) = 2;$	≤x≤1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			CO5

	and $y(x = 1) = 6$			
	Use $N = 2$	2 (therefore, $N + 1 = 3$ FD points, x_1 , x_2 and x_3)		
	(a)	Write the values of y_1 and y_3 (05)		
	(b)	Use Simpson's rule (with $h = 0.5$) to evaluate the integral on the right		
		(10)		
	(c)	Use the finite difference technique to obtain an equation for y_2 . Simplify		
		as much as possible		
		(10)		
	(d)	Check if $y_2 = 0.345$ satisfies this equation (05)		
		(30 Points) the following ODE-IVP involving two variables, $y_1(t)$ and $y_2(t)$:		
Q2	Consider			
	i			
	with $y(t =$	$(= 0) = y_0 = [2 1]^{\mathrm{T}}$		
	(a) A =			
	F	$f(y) \equiv \mathbf{\dot{c}} \tag{10}$		
	(b) N in			
	ن ا			
	D (1	o <i>one</i> NRK iteration only. Obtain <i>numerical</i> answers (0)		
	ec	Plug in your answers in part (b) of this question (i.e., into the $F(y) = 0$ quation) and see what you get 05)		
		omment on your answer to part (c) of this question. (0)		

	(35 Pc	pints)	
	Continu	ed	
Q3	Consider the third order $(q - 1 = 3)$ implicit Hermite algorithm (in Table 5.1) of integrating ODE-IVPs for a single variable, $y(x)$, with		
	$ \begin{array}{l} \alpha_0 = \frac{1}{2} \\ \alpha_1 = \alpha_3 = \alpha_4 = \dots = 0 \\ \alpha_2 = \frac{1}{2} \end{array} $		
	$\beta_0 = \frac{-1}{4}$ $\beta_1 = \beta_3 = \beta_4 = \dots = 0$		
	$\beta_2 = \frac{1}{4}$ (a) Write down the algorithm for y_{n+1} in terms of y_i and y'_i	(05)	
	(b) Using $\frac{dy}{dt} = \lambda y$, $y(t=0) = y_0$, obtain the characteristic equation for μ and s	solve	
	for μ_i [Hint: Note that you will get <i>two</i> values of μ_i] (10)		
	(c) Which of these two roots is the <i>genuine</i> root and which is the <i>spurious</i> is	root (05)	
	(d) What is the <i>requirement of stability</i> for this problem.	(15)	
	(35 Pc	pints)	
	* * *		

End Sem Exam MATH 311 2018-19-I