Name:

Enrolment No:

Semester

: V

: 03 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B. Tech ET + IPR

: Combustion Energy and Technology **Course Name** Time Max. Marks: 100

Course Code : ETEG303

Nos. of page(s) : 02

1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever Instructions:

necessary. The notations used here have the usual meanings.

SECTION A (Total Marks: 2 \times 10 = 20)

➤ Attempt <u>all</u> the questions. All questions carry equal marks.

S. No.		Marks	CO
Q 1	Explain the following terms: i) Natural gas		601
		10	CO1,
	ii) Heat of combustion	10	CO4
Q 2	Explain in detail about atmospheric distillation unit in petroleum refinery with neat sketch.	10	CO3
	SECTION B (Total Marks: $4 \times 15 = 60$)		
>	Attempt <u>all</u> the questions. All questions carry equal marks.		
Q 3	Explain in detail about the manufacturing of producer gas and discuss about its	15	CO2,
	properties and uses.		CO3
Q 4	Write short notes on the following		
	i) Anthracite coal		CO1,
	ii) In-situ theory of coal formation	15	CO2
	iii) Low temperature oxidation		
Q 5	Explain the following terms:	0.0	CO2,
	a. Catalytic reforming	08	CO3
0.6	b. Carbide theory	07	
Q 6	Methane is burned with excess air to ensure complete combustion. If 60 kg of		
	CO ₂ and 10 kg of CO are obtained when methane is completely burned with 500		
	kg air, determine the following:		
		15	CO ₅
	a) The mass of methane burnt (in kilograms)		
	b) The percent excess air		
	b) The percent excess an		

	SECTION-C (Total Marks: 1 x 20 = 20)		
>	Attempt <u>any one</u> question.		
Q 7	Calculate the adiabatic flame temperature for complete combustion of ethyl alcohol with 25% excess air. The alcohol and air are supplies at 298 K and water formed is in the vapour state. The standard heat of combustion of alcohol is -1366.91 kJ/mol and latent heat of vaporization of water is 44 kJ/mol. The mean molar specific heats in kJ/kmol K, where T is in °C, are: CO ₂ : 36.11 + 0.0423T H ₂ O: 33.46 + 0.0069T O ₂ : 29.10 + 0.0116T N ₂ : 29.00 + 0.0022T	20	CO5
Q 8	 i) The heats of combustion of solid carbon and gaseous CO are -393.51 kJ/mol and -282.99 kJ/mol respectively. Determine the heat of formation of CO. ii) Discuss about the classification of crude oil. iii) Define Air to fuel ratio and equivalence ratio. iv) What are the uses of coal? 	05 05 05 05	CO1, CO2, CO4