Name: Enrolment No:		15 UPES		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, November/ December 2018				
SECTION A				
S. No.			Marks	CO
Q1	Design a 4 to 2 bit Priority Encoder?		5	CO2
Q2	Solve using K Map: i) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,3,4,7,8,10,12,14)+\mathrm{d}(2,6)$ ii) $\quad \mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum \mathrm{m}(0,7,8,9,10,12)+\mathrm{d}(2,5,13)$		$\underset{(2.5)}{(2.5}$	CO2
Q3	Answer the following: i) What is the advantage of having input output processors in the computer system when we have processor/CPU which can also do input output transfers? ii) Give two differences between memory-mapped I/O and isolated I/O. iii) Convert binary number $(11111011.100101)_{2}$ to decimal, hexadecimal and Octal number. iv) Differentiate between Combinational and Sequential Circuits		$(1+1+2+1$ $=5)$	$\begin{aligned} & \mathrm{CO} 5, \\ & \mathrm{CO} 2 \end{aligned}$
Q4	Suppose we have the instruction Load 1000. Given memory and register R1 contain the values below: Assuming register R2 has content as 1300 , determine the actual value loaded into the accumulator. Show the appropriate calculation wherever needed: i) Immediate ii) Direct iii) Indirect		(5)	CO1

	suitable diagram		
SECTION-C			
Q9	A. An instruction pipeline has five stages where each stage take 2 nanoseconds and all instruction use all five stages. Branch instructions are not overlapped. i.e., the instruction after the branch is not fetched till the branch instruction is completed. Under ideal conditions, i) Calculate the average instruction execution time assuming that 20% of all instructions executed are branch instruction. Ignore the fact that some branch instructions may be conditional. ii) If a branch instruction is a conditional branch instruction, the branch need not be taken. If the branch is not taken, the following instructions can be overlapped. When 80% of all branch instructions are conditional branch instructions, and 50% of the conditional branch instructions are such that the branch is taken, calculate the average instruction execution time. B. Consider a 5-stage pipeline - IF (Instruction Fetch), ID (Instruction Decode and register read), EX (Execute), MEM (memory), and WB (Write Back). All (memory or register) reads take place in the second phase of a clock cycle and all writes occur in the first phase. Consider the execution of the following instruction sequence:	$(5+5=10)$ $(3+4+3=$ 10)	CO3
Q10	Explain the complete procedure of address Sequencing (address calculation) of microinstructions present in control memory in a microprogrammed control unit with the help of suitable diagram. OR Assume there is a control memory having 1024 words of 32 bits each. The format of control word is as shown: The Microperation field has 16 bits. i) How many total bits are there in the control address register? ii) How many bits are there in the branch address field and the condition select field? iii) If there are 16 status bits in the system, how many bits of the branch logic are used to select a status bits? iv) How many bits are left to select an input for the multiplexers? v) Using mapping procedure, find the first microinstruction address of 7 bits from the following 4 bits operation code: a) 1010 b) 1100 vi) Explain the difference between Hardwired and Microprogrammed Control. Is it possible to have a hardwired control associated control	(20) $\begin{aligned} & (2+2+2+ \\ & 2+2+10= \\ & 20) \end{aligned}$	CO4

1.

Name:

Enrolment No:

UUPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, November/ December 2018

Program Name: B.Tech(CSE-All Branches)

Semester : III

Course Name	$:$ Computer System Architecture	Time $: 03 \mathrm{hrs}$
Course Code	$:$	CSEG2004

Nos. of page(s) : 04
Instructions: Answer the following questions

Max. Marks : 100

SECTION A

S. No.		Marks	CO
Q1	Convert SR to T Flip Flop	5	CO2
Q2	Solve using K Map: i) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,2,3,8,9,12,13,15)$ ii) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime}($ bar $) \mathrm{B}^{\prime}($ bar $) \mathrm{D}+\mathrm{ABC}^{\prime}($ bar $) \mathrm{D}^{\prime}($ bar $)+\mathrm{A}^{\prime}$ (bar)BD+ABCD' (bar) Note: ' symbol here denoted negation(bar)	(2.5 X 2)	CO2
Q3	Answer the following: i) What is the advantage of handshaking asynchronous data transfer technique over strobe control? ii) Give two differences between RISC and CISC architecture. iii) Convert binary number $(11111111.100101)_{2}$ to decimal, hexadecimal and Octal number. iv) The 8 bit Registers AR,BR, CR and DR initially have the following values: $\begin{aligned} & \mathrm{AR}=11110010 \\ & \mathrm{BR}=11111111 \\ & \mathrm{CR}=10111001 \\ & \mathrm{DR}=11101010 \end{aligned}$ Determine the 8 bit values in each register after the execution of the following sequence of micro operations. $\begin{aligned} & \mathrm{AR} \leftarrow \mathrm{AR}+\mathrm{BR} \\ & \mathrm{CR} \leftarrow \mathrm{CR} \wedge \mathrm{DR}, \mathrm{BR} \leftarrow \mathrm{BR}+1 \end{aligned}$ Add BR to AR AND DR to CR, increment BR	$(1+2+2+1)$	$\begin{aligned} & \mathrm{CO5}, \\ & \mathrm{CO} 2 \end{aligned}$
Q4	An instruction is stored at location 300 with its address fields at location 301. The address field has the value 400. A processor register RI contain the number 200. Evaluate the effective address if the addressing mode of the instruction is	(1x 5)	CO1

Q10	Explain the complete procedure of address Sequencing (address calculation) of microinstructions present in control memory in a microprogrammed control unit with the help of suitable diagram. OR Differentiate between a microprocessor and a microprogram? Is it possible to design a microprocessor without a microprogram? Are all microprogrammed computers also microprocessors? The control memory has 4096 words of 24 bits each. i) How many bits are there in the Control Address Register? ii) How many bits are there in each of the four inputs, going into the multiplexers? iii) What are the number of inputs in each multiplexer and how many multiplexers are needed?	(20) $\begin{gathered} (10+4+2+2 \\ +2) \end{gathered}$	CO4

