Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B. Tech ET+IPR

Course Name : Wind Energy Technology Course Code : ETEG 401 Semester : VII Time : 03 hrs Max. Marks : 100

Nos. of page(s) : 2

Instructions: All questions are mandatory.

SECTION A

S. No.		Marks	CO
Q 1	Discuss different types of Wind Energy Conversion System with neat diagram	4	C01
Q 2	Distinguish between the three major methods of aerodynamic control.	4	CO2
Q 3	A horizontal axis wind turbine has a diameter of 50m. When the wind speed unaffected by the turbine is 10 m/s, the turbine rotates at 60 rpm and produces 100kW of mechanical power. Find the tip speed ratio and the power coefficient.	4	CO3
Q 4	 Explain which among the following electrical machines are suitable for WECS: a. PMDC b. Synchronous Machine c. Induction Machine d. DFIG 	4	CO4
Q 5	Discuss the environmental impacts of on shore wind farms.	4	CO5
	SECTION B		
Q 6	Derive an expression for maximum power extracted from a wind turbine with the following assumptions: a. $\eta_{Generator} = 90\%$ b. $\eta_{Wind Turbine} = (1/2) i \eta_{Generator}$	10	CO2
Q 7	a. Explain in detail about various methods used for measuring wind speed.b. Explain briefly about the wind turbines used for pumping application.	10	CO3
Q 8	 a. Explain the difference between standalone and grid connected wind energy conversion system. b. Explain in detail about the following: i. Fixed speed wind turbine ii. Variable speed wind turbine 	10	CO4
Q 9	a. Explain in detail about the various components, which affect the cost of electricity from wind farm.b. Explain the Wind energy scenario of India.	10	CO5
	SECTION-C		

Q 10	A windmill with a swept area of 1000m ³ operates with 56% efficiency under STP conditions. At the location of the windmill, there is no wind between 19:00 and 05:00. At 05:00, the wind starts up and its velocity increases linearly with time from zero to a value that causes the 24-h average velocity to be 20 m/s. At 19:00, the wind stops abruptly. Calculate the maximum energy the windmill can generate in one year.	20	CO2
Q 11	Calculate the total thrust and aerodynamic power developed in a three-blade wind turbine at a wind velocity of 9m/s. The machine specifications are as follows Diameter = 9m Rotational speed = 100 rpm TSR = 5 Chord length = 0.45m, uniform throughout the blade Pitch angle = 5, no twist Distance from axis to inner edge of the blade = 0.5m Aerofoil section = NACA 63-215 (shown in figure) Note: 1. Divide the blade into three number of sections. 2. Assume relevant values of C_L and C_D if attack angle exceeds the given range $\int_{0}^{0} \int_{0}^{0} \int_{0}$	20	CO3

Name:

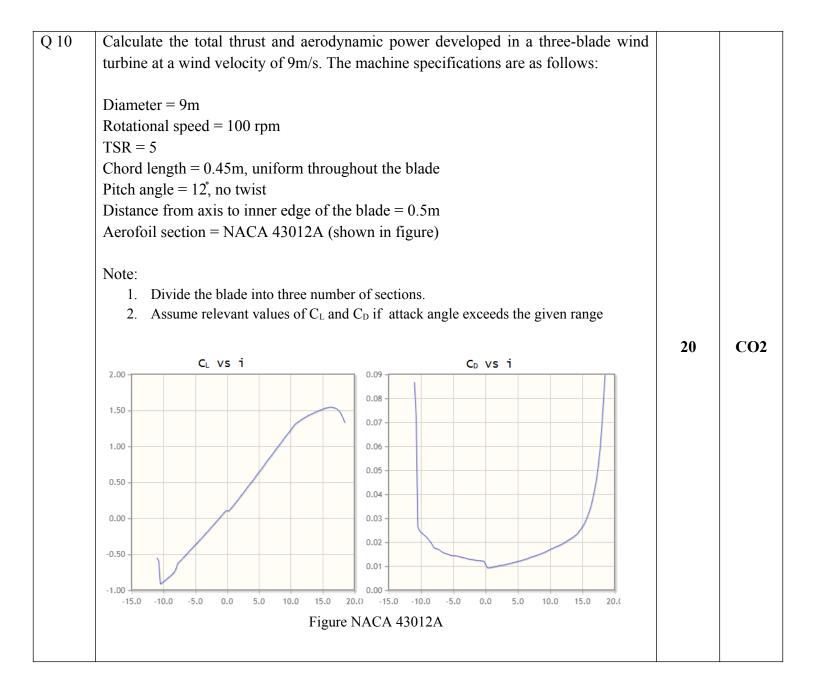
Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B. Tech ET+IPR


Course Name : Wind Energy Technology Course Code : ETEG 401 Semester : VII Time : 03 hrs Max. Marks : 100

Nos. of page(s) : 3

Instructions: All questions are mandatory.

SECTION A

	Marks	CO
Explain why the blade tip of a modern wind turbine can move at a speed about ten times faster than the wind speed.	4	CO1
Explain the lift principle of a three bladed VAWT with neat sketches.	4	CO2
A wind turbine has 3 blades with rotor diameter of 20 m, chord $c = 0.75$ m and rated speed of 60 rpm for rated power. At a wind speed of 15 m/s and $\rho = 1.2$ kg/m ³ , calculate the power generated by the turbine when wind blows on the chord at an angle of 30°.	4	CO3
Derive the equivalent circuit of an Induction generator connected to a wind turbine with rotor diameter 52m.	4	CO4
Discuss the environmental impacts of off shore wind farms.	4	CO5
SECTION B		
Derive an expression for maximum power extracted from a wind turbine (works on thrust only) with the following assumptions: a. $\eta_{Generator} = 100\%$ b. n_{VS} is $n_{Generator} = n_{Generator}$	10	CO2
a. Explain the significance of power curve of a wind power plant.	5+5	CO3
A four-pole induction generator is rated at 300kVA and 480V. It has the following parameters $Rs=0.015\Omega R'_R=0.0132\Omega X_s=X'_R=0.12\Omega X_M=8\Omega$. Calculate the following: a. Power produced at a slip of -0.02. b. the torque c. power factor d. Efficiency. (Ignore mechanical losses)	10	CO4
a. Explain in detail about the various components of cost involved in Wind farm project timeline.b. Explain the impact of wind resource assessment on the economics of wind farms.	5+5	CO5
	times faster than the wind speed. Explain the lift principle of a three bladed VAWT with neat sketches. A wind turbine has 3 blades with rotor diameter of 20 m, chord c = 0.75 m and rated speed of 60 rpm for rated power. At a wind speed of 15 m/s and $\rho = 1.2$ kg/m ³ , calculate the power generated by the turbine when wind blows on the chord at an angle of 30. Derive the equivalent circuit of an Induction generator connected to a wind turbine with rotor diameter 52m. Discuss the environmental impacts of off shore wind farms. SECTION B Derive an expression for maximum power extracted from a wind turbine (works on thrust only) with the following assumptions: a. $\eta_{Generator} = 100\%$ b. $\eta_{Wind Turbine} = \eta_{Generator}$ a. Explain the significance of power curve of a wind power plant. b. Explain the stalling action in wind turbines. A four-pole induction generator is rated at 300kVA and 480V. It has the following parameters $R_S=0.015\Omega R'_R=0.0132\Omega X_S=X'_R=0.12\Omega X_M=8\Omega$. Calculate the following: a. Power produced at a slip of -0.02. b. the torque c. power factor d. Efficiency. (Ignore mechanical losses) a. Explain in detail about the various components of cost involved in Wind farm	Explain why the blade tip of a modern wind turbine can move at a speed about ten times faster than the wind speed.4Explain the lift principle of a three bladed VAWT with neat sketches.4A wind turbine has 3 blades with rotor diameter of 20 m, chord $c = 0.75$ m and rated speed of 60 rpm for rated power. At a wind speed of 15 m/s and $\rho = 1.2$ kg/m³, calculate the power generated by the turbine when wind blows on the chord at an angle of 30.4Derive the equivalent circuit of an Induction generator connected to a wind turbine with rotor diameter 52m.4Discuss the environmental impacts of off shore wind farms.4Derive an expression for maximum power extracted from a wind turbine (works on thrust only) with the following assumptions: a. $\eta_{Generator} = 100\%$ b. $\eta_{wind Turbine} = \eta_{Generator}$ 10a. Explain the significance of power curve of a wind power plant. b. Explain the stalling action in wind turbines.5+5A four-pole induction generator is rated at 300kVA and 480V. It has the following parameters $R_s = 0.015\Omega R_R = 0.0132\Omega X_s = X_R = 0.12\Omega X_M = 8\Omega$. Calculate the following: a. Power produced at a slip of -0.02. b. the torque c. power factor d. Efficiency. (Ignore mechanical losses)10a. Explain in detail about the various components of cost involved in Wind farm10

Q 11	The basic inform	nation about the Danish wind farm:				
		Wind farm capacity (MW)	50			
		Capital Investment (€)	7000000			
		Period of operation (years)	25			
		Decommissioning cost (€)	3000000			
		O & M costs (€/kWh)	0.0091			
		Capacity factor	0.25			
		Electricity selling price, tariff (€/kWh)				
		Annual discount rate (%)	8		20	CO4
		Inflation rate (%)	3			
	 Use the above information given and find the following a. AEP b. O & M cost in euro for each year (€/year) c. Annual revenue from selling the electricity (€/year) d. Annual net income (€/year) e. NPV of the wind farm 					
		c. Annu d. Annu e. NPV	c. Annual revenue from selling the electricd. Annual net income (€/year)	 c. Annual revenue from selling the electricity (€/year) d. Annual net income (€/year) e. NPV of the wind farm 	 c. Annual revenue from selling the electricity (€/year) d. Annual net income (€/year) e. NPV of the wind farm 	 c. Annual revenue from selling the electricity (€/year) d. Annual net income (€/year) e. NPV of the wind farm