Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 $\right] \quad$ Semester: $7^{\text {th }}$			
SECTION A All questions in SECTION A are compulsory			
S. No.		Marks	CO
Q 1	What do you mean by Natural Language Processing? Mention some areas where NLP is applied.	4	CO1
Q 2	What are the challenges of NLP? What do you mean by supervised learning?	4	CO1
Q 3	What do you mean by function and content words? Give examples. If we read Tom Sawyer, who dominated as the most frequent words?	4	CO3
Q 4	If first corpus has TTR1 $=0.013$ and second corpus has TTR $2=0.13$, where TTR1 and TTR2 represents type/token ratio in first and second corpus respectively; then what can you say about both of the corpus? Explain your suggestion.	4	CO3
Q 5	In the sentence, "In Dehradun I took my hat off. But I can't put it back on."; compute the total number of word tokens and word types. Bigram models are what ordered Markov Models?	4	CO3
SECTION B (Q 6, 7, 8 are compulsory. Attempt Q9A or Q9B)			
Q 6	Given the following sentences: "I want to eat. I want to sing. I eat Chinese." If you are following the bigram model; what is the probability of the following sentence: "I want to eat Chinese"? Also compute the probability of the following sentence: "I want to sing and eat "?	10	CO3
Q 7	In Vector Space Model, suppose we have two sentences bear the words; $\mathrm{S} 1:<\mathrm{man}$, eat, eat $>$; S2: $<$ man, eat, chicken, chicken $>$; S3: $<$ man, eat, chicken $>$. Find the cosine and Jaccard similarity between S1 and S3.	10	CO3
Q 8	How is the sigmoid model related to probability? What is the range of the sigmoid function $S(X)$? Simulate the 'OR' function using a basic neural network without weights. What should be the threshold?	10	CO2
Q 9A	"I made her duck". What are the possible interpretations that you can make out from the statement? If some indices are inserted in a max-heap. What is the complexity of finding the minimum element? Explain the Hidden Markov Model related to NLP with examples.	10	CO3
Q 9B	For text compression in NLP we use the Huffman coding technique. Given the following sentences: "I want to eat. I want to sing. I eat Chinese. He too want to eat Chinese. I want to sing and eat." Give the Huffman tree. Compute in ratio how much text was compressed using the technique.	10	CO3

| | $\begin{array}{l}\text { SECTION-C }\end{array}$ | |
| :--- | :--- | :--- | :--- |
| (Q 10 is compulsory. Attempt Q11A or Q11B) | | |$]$

CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	:	MID		END	-	SUPPLE	
Name of the School (Please tick, symbol is given)	:	SOE		SOCS	ㅂ	SOP	
Programme	:	B.Tech.					
Semester	:	$7^{\text {th }}$ semester					
Name of the Course	:	Natural Language Processing					
Course Code	:	CSEG-415					
Name of Question Paper Setter	:	Bikram Pratim Bhuyan					
Employee Code	:	40001825					
Mobile \& Extension	-	9854350562					
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE": NOT APPLICABLE							
FOR SRE DEPARTMENT							
Date of Examination			:				
Time of Examination			:				
No. of Copies (for Print)			:				

SET: 2

Name:
Enrolment No:

Cours Progr Time:	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Natural Language Processing (CSEG-415) Semes me: B.Tech. 3 hrs. Max. Mark	r: $7^{\text {th }}$ 100	
SECTION AAll questions in SECTION A are compulsory			
S. No.		Marks	CO
Q 1	Mention some areas where NLP is applied. What are the challenges of NLP?	4	CO1
Q 2	I made her duck. What are the possible interpretations that you can make out from the statement? If some indices are inserted in a max-heap. What is the complexity of finding the minimum element?	4	CO1
Q 3	What do you mean by function and content words? Give examples. If we read Tom Sawyer, who dominated as the most frequent words?	4	CO3
Q 4	If first corpus has TTR1 $=0.059$ and second corpus has TTR2 $=0.59$, where TTR1 and TTR2 represents type/token ratio in first and second corpus respectively; then what can you say about both of the corpus? Explain your suggestion.	4	CO3
Q 5	In the sentence, "India is my homeland. I will not give up on it." compute the total number of word tokens and word types. Bigram models are what ordered Markov Models?	4	CO3
SECTION B (Q 6, 7, 8 are compulsory. Attempt Q9A or Q9B)			
Q 6	Given the following sentences: "I want to eat. I want to sing. I eat Chinese." If you are following the bigram model; what is the probability of the following sentence: "I want to eat Chinese"? Also compute the probability of the following sentence: "I want to sing and eat "?	10	CO3
Q 7	For text compression in NLP we use the Huffman coding technique. Given the following sentences: "I want to eat. I want to sing. I eat Chinese. He too want to eat Chinese. I want to sing and eat." Give the Huffman tree. Compute in ratio how much text was compressed using the technique.	10	CO3
Q 8	How is the sigmoid model related to probability? What is the range of the sigmoid function $\mathrm{S}(\mathrm{X})$? Simulate the 'OR' function using a basic neural network without weights. What should be the threshold?	10	CO2
Q 9A	Explain Naive Bayes and Hidden Markov Models related to NLP.	10	CO2
Q 9B	What are the different types of learning? Explain each type with examples.	10	CO2
	SECTION-C (Q 10 is compulsory. Attempt Q11A or Q11B)		
Q 10	Consider the following productions: $\mathrm{S} \longrightarrow \mathrm{NP}$ VP	20	CO3

	$\mathrm{NP} \longrightarrow$ NP PP $\mathrm{NP} \longrightarrow$ sushi $\mathrm{NP} \longrightarrow \mathrm{I}$ NP \longrightarrow chopsticks $\mathrm{NP} \longrightarrow$ you $\mathrm{VP} \longrightarrow \mathrm{VP}$ PP VP \longrightarrow Verb NP Verb \longrightarrow eat PP \longrightarrow Prep NP Prep \longrightarrow with Where; NP - noun phrase VP -verb phrase PP -preposition phrase. c) Use the CYK parsing algorithm to find if the sentence "I eat sushi with chopsticks with you" belongs to the above grammar. d) Explain the CYK algorithm.					
Q 11A	Consider a simple weather can be desc - State 1: precipitatio Transitions between $A=\left\{a_{i j}\right\}=$ d) Draw the stat e) Given that th weather for t f) What is the p exactly T con		arkov m cow) Sta cribed by 0.3 0.2 0.8 graph. day $\mathrm{t}=1$ s will be at the we s?	del of the weather. Any given day, the 2 : cloudy • State 3 : sunny the transition matrix is sunny, what is the probability that the "sun, sun, rain, rain, sun, clouds, sun"? ther stays in the same known state Si for	20	CO4
Q 11B	We seek to classify associated with a pai document and y is th The vocabulary is si Consider a naive Ba $\begin{array}{\|c\|} \hline \text { word type } \\ \hline P(w \mid y=1) \\ \hline P(w \mid y=0) \\ \hline \end{array}$ and the following pria Consider the docum	uments a x, y), whe abel for 3, so feat model w 1 $1 / 10$ $5 / 10$ probabili $=0)$ 10 with cou	being ab $\begin{array}{l}\text { ex is a f } \\ \text { hether it } \\ \text { re vector } \\ \text { th the fol }\end{array}$ 2 $2 / 10$ $2 / 10$ ies over c ts $x=(1$, .	out sports or not. Each document is ature vector of word counts of the about sports ($\mathrm{y}=1$ if yes, $\mathrm{y}=0$ if false). look like $(0,1,5),(1,1,1)$, etc. owing conditional probability table: asses: $0,1)$.	20	C04

c) Which class has highest posterior probability?
d) What is the posterior probability that the document is about sports?

