Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Data Mining & Business Intelligence

telligence Semester: I

Programme: M.Tech. (Computer Science & Engineering)

Code: CSDA 7001

Time: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A

S. No.		Marks	CO
Q1.	 a) Bronze, Silver, and Gold medals as awarded at the Olympics will be termed as(Ordinal / nominal) attribute. b) Suppose a group of 15 cricket innings scores of a batsman has been recorded in sorted form as 15, 29, 35, 42, 53, 56, 71, 82, 82, 95, 105, 128, 159, 193, 258. We wish to partition them into three bins. The elements in bins using equi-depth partitioning will be () and () AND using equi-width partitioning will be (), () and (4	CO1/ CO2/ CO3
Q2.	Suppose that you are employed as a data-mining consultant for an <i>Internet search engine company</i> . Describe how data mining can help the company by giving <u>one</u> <u>specific example</u> of how techniques, such as clustering, classification, association rule mining, and anomaly detection can be applied.	4	CO1/ CO2/ CO3
Q3.	Analyze the role of data mining and business intelligence applications in banking.	4	CO4
Q4.	What do you understand by term "Big-Data"? Justify your answer by taking suitable examples.	4	CO5
Q5.	Critically comment on the statement "Data Pre-processing takes 60% of the total efforts in data-mining" The answer must contain the examples to validate the justification.	4	CO1
	SECTION B		
Q6.	Explain linear and non-linear regression using an example. Also, explain classification by back-propagation method of neural networks.	10	CO3
Q7.	Describe OLTP and OLAP. How Meta-data models are used in data mining, illustrate.	10	CO1
Q8.	Elaborate how data mining and business intelligence applications play an importance role in production with respect to various industries.	10	CO4
Q9.	What is a frequent item in a transactional data set? Find all frequent item-sets in the following data set by using Apriori algorithm. Given min_support Count = 2	10	CO2

		Tid		Items				
		10	A, C, D					
		20	B, C, E					
		30	A, B, C, E					
		40	B, E					
	OR							
	What is a frequent item in a transactional data set? Find all frequent item-sets in the following data set by using FP-tree algorithm. Given min_support Count = 3							
	TIL)	Items bought	(ordered) frequent	items_			
	100			p $\{f, c, a, m, p\}$				
	200		$\{a, b, c, f, l, m, o\}$ $\{f, c, a, b, m\}$					
	300		$\{b, f, h, j, o, w\}$					
	400)	$\{b, c, k, s, p\}$	$\{c, b, p\}$				
	500)	$\{a, f, c, e, l, p, m,$	$n\} \qquad \{f, c, a, m, g\}$	<i>p</i> }			
			SECT	ION-C				
						,		
	Consider the trainin problem:	g examples	s shown in be	low table for a	binary classification			
Q10.		Instance 1 2 3 4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Target Class + + + - + + + + + + + + + + + +		8+8+4	CO3	
	a) What is the entropy of this collection of training examples with respect to positive class? b) What are the information gains of a ₁ and a ₂ relative to these training examples? c) What is the best split (among a ₁ , a ₂ and a ₃) according to the information gain?							
	Write a comprehensi system.	ve note on	Hadoop archite	ecture, which also	includes its storage	20	CO5	

	OR	OR			
Q11.	Write the lucid notes on the following:				
	i) Spatial Mining	5 *4			
	ii) Web Mining				
	iii) Text Mining				
	iv) Distributed File System				