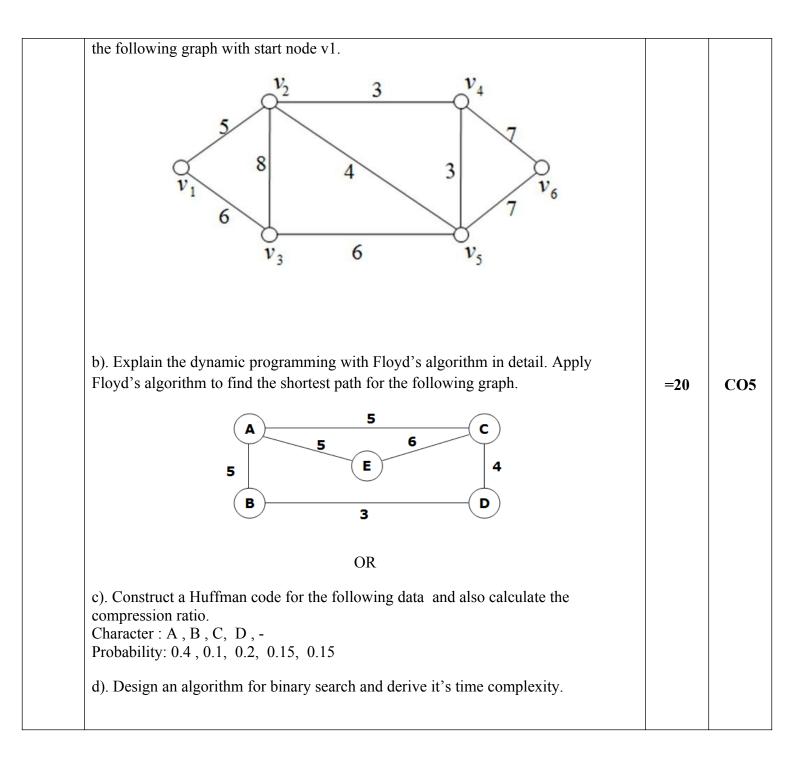

Name: Enrolm	ent No:				
	UNIVERSITY OF PETROLEUM AND ENERG	GY STUDII	ES		
Course Course	e Name : Design and Analysis of Algorithms Time e Code : CSEG2003 Max. E page(s) : 03	ester : III e : 03 hr Marks : 100	'S		
	SECTION A				
S. No.		Marks	CO		
Q1	What is pseudo-code? Explain with an examples	5	CO1		
Q2	Differentiate between divide and conquer and dynamic programming.	5	CO1		
Q3	Find optimal solution for the knapsack instance using dynamic programming meth $n = 3, w = [20, 15, 15], P = [40, 25, 25]$ and C = 30	nod; 5	CO2		
Q4	Write down the quicksort worst case, best case, and average case recurrence relation and give one input sequence for each case.	ons 5	CO4		
	SECTION B				
Q5	Write a pseudocode for divide and conquer algorithm for merging two sorted array into a single sorted one. Explain with an example.	^{rs} 10	C01		
Q6	Draw an Optimal Binary Search Tree for n=4 identifiers $(a1,a2,a3,a4) = (do,if, real while)$ and frequencies are P(1:4)=(4,6,7,8)	ıd, 10	CO2		
Q7	Find the Optimal Solution for Travelling Sales Person problem using Branch a Bound designing technique.	and 10	CO4		



Name: Enrolment No:				
	UNIVERSITY OF I	PETROLEUM A	AND ENERGY ST	TUDIES
	End Semester Ex	amination, Decem	100 100 100 100 100 100 100 100 100 100	
Programme Name:	B.Tech(CSE-All Courses)	,		: III
Course Name :	Design and Analysis of Alg	orithms	Time	: 03 hrs
Course Code :	CSEG2003		Max. Marl	cs : 100
Nos. of page(s) :	03			
Instructions:	Answer the following ques	stions		
		SECTION A		

S. No.		Marks	CO
Q1	Derive the time complexity of recursive merge sort.	5	CO1
Q2	Construct the spanning tree for the following graph using BFS and DFS method.	5	CO1
Q3	Define the following with an example; i) Feasible solution ii) Optimal solution	5	CO2
Q4	What is dynamic programming? Design an algorithm to solve the 0/1 knapsack problem using Dynamic programming.	5	CO4

				SECT	TION B				
Q5	Apply quicksort to sort the list E, X, A, M, P, L, E in alphabetical order and draw the recursive call binary tree.						10	CO1	
Q6	Explain the general principle of the Greedy method and Find the optimal profit and the optimal solution for the following instance of the Knapsack problem using the greedy technique.								
		Object	1	2	3	4		10	CO2
		Profit	10	40	30	50			
	Maximum	Weight Knapsack ca	$\frac{5}{100000000000000000000000000000000000$	4	6	3			
Q7	-	sequence pro 1s problem u		-	n. Find the	optimal solu	utions to solve	10	CO4
Q8	Construct the optimal binary search tree for the following data using Dynamic programming technique.								
		Element	0	1	2		3		
		Data Frequency	<u>10</u> 4	12	<u> </u>		<u>21</u> 3		
				OR					
		algorithm to th from node	A to all the	-	-	th problem	and find the	10	CO3
	shortest par	th from node	A to all the	ngle source a	-	th problem a	and find the	10	CO3
Q9	a). Devise a	th from node	A to all the	ngle source e remaining SECT ent binary se n of subset p	nodes. TON-C arch and exproblem usi	xplain with ng backtrac	an example. king. Also	10 10+10 =20	CO3

