Name: Enrolment No:					
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Course: Advanced Computer Graphics (CSEG459) Programme: B.Tech. (CSE spl. GG)					
Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all questions. There are internal choices in Q. No. 9 and 11.					
SECTION A					
Q 1	What is Alpha-Channel in the context of RGB color space?	[4]	CO1, CO2		
Q 2	What is subdivision of mesh surfaces? Why is it required?	[4]	CO2		
Q 3	Differentiate between vertex and fragment shaders.	[4]	CO2		
Q 4	List at the least four OpenGL texture mapping functions with their one/two lines description.	[4]	CO2		
Q 5	Differentiate between global and local illumination with the help of example.	[4]	CO1		
SECTION B					
Q 6	What are NURBS surfaces? Discuss their advantages over non-rational B-spline patches.	[10]	CO2		
Q 7	Write an OpenGL function to draw a mesh.	[10]	CO3		
Q 8	List various properties of the meshes. What is polyhedra?	[10]	CO2		
Q 9	Discuss scene-graphs graphics data structure.	[10]	CO3, CO4		
	OR				
	Discuss OpenGL surface texture and volume texture functions.	[10]	CO3, CO4		
SECTION C					
Q 10	Is ray tracing an extended idea for ray casting? Explain the basic ray tracing algorithm Discuss how space-subdivison methods reduce intersection computations.	i. [20]	CO3		
Q 11	Explain Marching-Cubes algorithm with suitable example.	[20]	CO3, CO4		
	OR				
	In the context of projections, describe: (1) One-principal vanishing point perspective (2) Two-principal vanishing point perspective (3) Three-principal vanishing point perspective	[20]	CO3, CO4		

	What are the principal vanishing points for the standard perspective transformation?				
Name: Enrolment No:					
Enrolı	Enrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
End Semester Examination, December 2018 Course: Advanced Computer Graphics (CSEG459) Semester: VII					
Programme: B.Tech. (CSE spl. GG)					
Time: 03 hrs. Max. Marks: 100					
Instructions: Attempt all questions. There are internal choices in Q. No. 9 and 11. SECTION A					
Q 1	List some commonly used NURBS surfaces.	[4]	CO2		
Q 2	What is subdivision of mesh surfaces? Why is it required?	[4]	CO1		
Q 3	List different methods to add details to surfaces.	[4]	CO2		
Q 4	Write at the least four OpenGL texture mapping functions with their one/two lines description.	[4]	CO2		
Q 5	Define perspective foreshortening and vanishing points.	[4]	CO1, CO2		
	SECTION B				
Q 6	Explain texture mapping with brief discussion on linear and surface texture patterns.	[10]	CO3		
Q 7	Do the modern graphics hardware operate the same way that the fixed function pipeline suggests? If not then how to modify the fixed function pipeline?	[10]	CO3, CO4		
Q 8	Discuss the working and utility of Lattice-Boltzman method in generating realistic graphics.	[10]	CO2		
Q 9	Discuss that reflection mapping can be used to improve realism in graphics.	[10]	CO2, CO3		
	OR				
	Explain different programmable shaders.	[10]	CO2, CO3		
SECTION C					
Q 10	Write short notes on following graphics data structures:	[20]	CO3		
	(a) Triangle meshes				
	(b) Winged-edge data structure				
Q 11	Draw and explain a 3D graphics pipeline. Describe the graphics pipeline in OpenGL and discuss its conformance to the above-mentioned 3D graphics pipeline. Where do the functions <i>gluOrtho2D()</i> and <i>gluLookAt()</i> come into the picture in the above flow?	[20]	CO3, CO4		
	OR				
	Discuss OpenGL Shading Language with shading structure. How the shaders are used in OpenGL?	[20]	CO3, CO4		