Name:

Enrolment No:

UPES

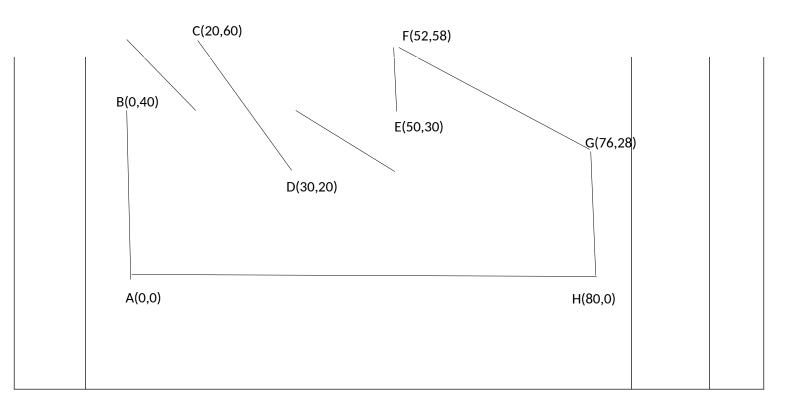
Semester

Max. Marks : 100

Time

: V

: 3 hrs


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December- 2018 ches

Programme Nai	ne: B.Tech CSE All Branches
Course Name	: Computer Graphics
Course Code	: CSEG329
Nos. of page(s)	: 3
Instructions:	
	SECTION A (Attempt All)

S. No.		Marks	CO
Q 1	Write short note on Affine Transformations.	4	CO3
Q2	Is OpenGL platform independent? Justify your answer with proper explanation.	4	CO
Q3	Write short note on polygon meshes; discuss various types of meshes and mention which is popular amongst them and why.	4	CO3
Q4	What are the conditions to be satisfied, in Area-subdivision method, so that a surface not to be divided further?	4	CO5
Q5	Prove: $\sum_{i=0}^{n} B_{n,i}(t) = 1$., B is Bernstein/Bezier basis.	4	CO4
	SECTION B (Attempt All)		•
Q6	Use Liang-Barsky line clipping algorithm to find the visible portion of the line P1 (0, 10)-P2 (30, 30) against the window having diagonally opposite corners as (5, 0) and (15, 15). Also, discuss why it is superior to Cohen Sutherland line clipping algorithm.	10	CO2
Q7	Derive the generalized expression for Cubic B-Spline Curve. Write down the expression for NURBS and explain its advantage over other Curves.	10	CO4
Q8	A pyramid defined by the coordinates A (0, 0, 0), B (1, 0, 0), C (0, 1, 0) and D (0, 0, 1) is rotated 45° about the line L that has the direction V=J+K and passing through point C (0, 1, 0). Find the coordinates of rotated figure.	10	CO3
Q9	 a. Discuss the working of CRT with proper diagram b. Explain how does one ensure that relative replacement in viewport is same as that of window. 	6+4=10	CO1 CO2

	Or		
	Derive the points with the help of Bresenham's algorithm for circle generation, write algorithm as well.		CO3
	SECTION-C(Attempt All)		
Q10 .	 a. A solid tetrahedron given by position vectors A(1,1,1), B(3,1,1), C(2,1,3) and D(2,2,2) and a parallel beam of light source is given by -(i+5j+6k) that falls on tetrahedron. Find the surfaces that are illuminated and the surfaces that are to be shadowed using blackface detection. b. Enumerate the major difference between Bezier Curve, B-Spline Curve and NURBS. 	12 +8=20	CO5, CO4
Q11	 a. The position vectors for the vertices of a triangular surface are given by A (10, 0, 0), B (0, 10, 0) and C (0, 0, 10). The normal vector at the vertex A is 10i+11j+11k, B is 11i+10j+11k, and C is 11i+11j+10k. The source for a parallel beam of light is given by L= -0.1924i-0.1924j+.9622k. Find the intensity at the parallel projected point (3, 3) within the projected triangle on the xy plane of the screen using gouraud interpolation technique. The ambient light intensity is 1 and the directional light intensity is 10. Assume Ka=0.5 and Kd=0.3. Neglect any intensity attenuation and specular effect. b. Transform the square P(0,0), Q(10,0), R(10,10) and S(0,10) into a master picture coordinate system with half of its size with center at (-1,-1). 	12+8=20	CO5, CO3
	OR		
	c. A tetrahedron is given by position vectors A(1,1,-1), B(3,1,-1), C(2,1,-3) and D(2,2,-2). Use Depth Buffer method to find visible planes of the tetrahedron if the viewing plane is XY-Plane i.e. z=0. Take screen resolution of 4*4, and background colour as black (colour value=0). The color of plane ACD is blue(1), CBD is green(2), BAD is cyan(3) and ACB is red(4).	12+8	CO5 CO2
	 d. With respect to Fig 1 and Scan line fill algorithm, answer the following. i. Which vertices will be considered only once and why? ii. Which vertices will be considered twice and why? iii. Which edge will be discarded and why? iv. Give entries for GET and AEL. 		
	Fig 1:		

Name:

Enrolment No:

UPES

Semester

Max. Marks : 100

Time

: V

: 3 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December- 2018

Programme Name:B.Tech CSE All BranchesCourse Name: Computer GraphicsCourse Code: CSEG329Nos. of page(s):2Instructions:

SECTION A (Attempt All)

S. No.		Marks	CO
Q 1	Write short note on Convex Hull property of curves	4	CO4
Q2	State and explain the DDA algorithm for line drawing with proper example, and mention its advantage and disadvantages.	4	CO2
Q3	Differentiate between the object space and image space method of detecting visible surface, give examples for each.	4	CO5
Q4	Write five properties of Bezier curve.	4	CO4
Q5	Is the Flat shading most efficient, if yes/no why?	4	CO5

SECTION B (Attempt All)

Q6	In given figure find out the intensity of pixel (20, 27) using Z Buffer visible surface detection algorithm. Intensity of surface ABCD and EFG are 20 and 30 respectively. E(12,35,5) = F(28,35,5) $B(30,30,10) = B(30,30,10)$	10	CO5
07	G(20,12,15) C(30,10,10)		
Q7	Derive the generalized expression for Cubic Spline Curve. Write down the expression for B-Spline and explain it superiority over Bezier curve.	10	CO4

Q8	Derive the decision parameter for the following line with the help of Bresenham's line generation algorithm. P1(X1,Y1) Y-axis X1 <x2 &="" y1=""> Y2 Y=mX+C P2(X2,Y2) X-axis</x2>	10	CO2
Q9	Define Fractals, mention two important characteristics of Fractals. Generate Koch Curve till 3rd Iteration for a equilateral triangle. OR	10	CO4
	Prove that a shear transformation can be expressed in terms of rotation and scaling operations.	10	CO3
	SECTION-C(Attempt all)		
Q10.	 Give a single 3x3 homogeneous coordinate transformation matrix, which will have the same effect as each of the following transformation sequences. a. Scale the image to be twice as large and then translate it 1 unit to the left. b. Scale the x direction to be one-half as large and then rotate counterclockwise by 900 about the origin. c. Rotate counterclockwise about the origin by 900 and then scale the x direction to be one-half as large. d. Translate down ½ unit, right ½ unit, and then rotate counterclockwise by 450. 2) Write down five call back functions in OpenGL and discuss the importance of glFlush () and glutMainLoop () function. 	12+8 Marks	CO3 CO1
Q11 .	 An Animation shows a car driving along a road which is specified by a Bezier curve with the following control points: 	10+10	

	X	0	5	40	50		
ľ	Y	0	40	5	15		
2)	second interva second of ania Consider follo D(100, 40). F	als. Calculat mation. owing windo ind the visib land algorith	e the position of ow coordinates ole portion of th	of car on the road A(100, 10), B(1 he line segments	be computed at 1 d at the start of the 60, 10, C(160, 40) EF, GH and IJ us), G(120, 20),H(14)), ing	CO4 CO2
	 Assume th vectors are 	-	Or on the surface	, the normal, lig	ht and sight (view	ing)	
	Assuming that assumed 10 tr shiny metallic assume ks=0. 5% of the energy	5j+0.5k at there is or imes more i c appearance 8, kd=ka=0. ergy from th umination m	ntense than the e; hence, most 15 and m=5. N e light source i nodel. Determin	e ambient light. of the light is sp lote that ks+kd= s absorbed. Dete	k=1. The light so The surface is to becularly reflected 0.95, which impli ermine the intensit lso when halfway	have a . Thus es that ty with	CO5 CO3