Name:
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name:	B.Tech. (CSE), All Specializations	Semester : III	
Course Name $:$	Discrete Mathematical Structures	Time	$: 03$ hrs
Course Code	$:$	CSEG2006	Max. Marks : 100
Nos. of page(s) $:$	$\mathbf{3}$		

Instructions: Attempt all the questions.

SECTION A

S. No.

Q1. Determine whether the function $T: R^{2}->R^{2}$ is linear transformation. If yes, prove it; if not, provide a counterexample to one of the properties:

$$
T\left[\begin{array}{l}
x \tag{4}\\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right]
$$

Q2. Discuss the necessary and sufficient condition for Euler circuit with suitable example.
Q3. Apply Havel-Hakimi algorithm and determine whether each of these sequences is graphic. For those that are, draw a graph having the given degree sequence.

b) $1,1,1,1,1$

Q4. Consider the following relation R on Z , determine whether the relation is reflexive, symmetric or transitive, and specify the equivalence classes if R is an equivalence relation on Z:

$$
(a, b) € R \text { if } a+b \text { is odd }
$$

Q5. Prove that if n is an integer and $3 n+2$ is even, then n is even using a proof by contradiction.

SECTION B

Q6. Let $\boldsymbol{V}=\mathbf{R}^{2}$, and let $\boldsymbol{u}, \boldsymbol{v} \in \mathbf{V}$ such that $\boldsymbol{u}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right)$ and $\boldsymbol{v}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$. Define addition component-wise, that is $\boldsymbol{u}+\boldsymbol{v}=\left(\boldsymbol{u}_{1}+\boldsymbol{v}_{1}, \boldsymbol{u}_{2}+\boldsymbol{v}_{\boldsymbol{2}}\right)$ and define scalar multiplication by scalar a to be $\boldsymbol{a} \boldsymbol{u}=\left(\boldsymbol{a} \boldsymbol{u}_{1}, \mathbf{0}\right)$. Determine whether or not this set under these operations is a vector space.
or
Sketch the image of the rectangle with vertices $(0,0),(1,0),(1,2)$, and $(0,2)$ under

$$
\underline{r}
$$

(a) A reflection about the x-axis
(b) A reflection about the y-axis
(c) A compression of factor $\mathrm{k}=1 / 4$ in the y -direction
(d) An expansion of factor $\mathrm{k}=2$ in the x -direction
(e) A shear of factor $\mathrm{k}=3$ in the x -direction
(f) A shear of factor $\mathrm{k}=2$ in the y -direction

Q7. Consider a complete undirected graph with vertex set $\{0,1,2,3,4\}$. Entry Wij in the matrix W below is the weight of the edge $\{i, j\}$. What is the minimum possible weight of a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T?

$$
W=\left(\begin{array}{ccccc}
0 & 1 & 8 & 1 & 4 \\
1 & 0 & 12 & 4 & 9 \\
8 & 12 & 0 & 7 & 3 \\
1 & 4 & 7 & 0 & 2 \\
4 & 9 & 3 & 2 & 0
\end{array}\right)
$$

Consider the directed graph shown in the figure below. There are multiple shortest paths between vertices S and T . Which one will be reported by Dijstra?s shortest path algorithm? Assume that, in any iteration, the shortest path to a vertex v is updated only when a strictly shorter path to v is discovered.

Q8. Calculate the chromatic polynomial of cyclic graph C_{4} using deletion-contraction (decomposition) theorem.

Q9. Solve the following recurrence relation.
$a_{n}+4 a_{n-1}+4 a_{n-2}=2^{n}+n^{2}+5$

Q10. (i) Given any two sets A and B, is it true that the set $A-B$ is always equal to the

CO5

[8] CO5
example.
(ii) Apply the distributive laws of set operations to prove that the set $(\mathrm{X} \cup \mathrm{Y})-\mathrm{Z}$ is always equal to the set $(\mathrm{X}-\mathrm{Z}) \cup(\mathrm{Y}-\mathrm{Z})$ for any sets X, Y, and Z .

SECTION-C

Q11. Determine whether $\mathrm{T}_{1} \mathrm{o} \mathrm{T}_{2}=\mathrm{T}_{2} \mathrm{o} \mathrm{T}_{1}$
(a) $T_{1}: R^{2} \rightarrow R^{2}$ is the orthogonal projection on the y-axis, and $T_{2}: R^{2} \rightarrow R^{2}$ is the orthogonal projection on the x -axis.
(b) $T_{1}: R^{2} \rightarrow R^{2}$ is the clockwise rotation through an angle α_{1}, and $T_{2}: R^{2} \rightarrow R^{2}$ is the anticlockwise rotation through an angle α_{2}.
(c) $T_{1}: R^{2} \rightarrow R^{2}$ is the orthogonal projection on the y-axis, and $T_{2}: R^{2} \rightarrow R^{2}$ is the rotation through an angle α.

Q12. Prove the following:
(a) The graph K_{5} is not planar.

CO5
(b) The graph $K_{3,3}$ is not planar.
(c) Let G be a simple undirected planar graph on 10 vertices with 15 edges. If G is a connected graph, then the number of bounded faces in any embedding of G on the plane is equal to 6 .
(d) The graph K_{4} is planar.
or
Prove the Euler's theorem for connected planar graph with n vertices, e edges and r regions.

CONFIDENTIAL

-

Name of Examination (Please tick, symbol is given)	:	MID		END	ㅂ	SUPPLE	
Name of the School (Please tick, symbol is given)	:	SOE	ㅂ	SOCS		SOP	
Programme	:	B.Tech. (CSE)					
Semester	:	III					
Name of the Course	:	Discrete Mathematical Structures					
Course Code	:	CSEG2006					
Name of Question Paper Setter	:	Dr. Shamik Tiwari					
Employee Code	:	40001641					
Mobile \& Extension	:	9509041102					
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE":							
FOR SRE DEPARTMENT							
Date of Examination			:				
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page

Name:
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

 End Semester Examination, December 2018

 End Semester Examination, December 2018}

| Programme Name: | B.Tech. (CSE), All Specializations | Semester $:$ III |
| :--- | :--- | :--- | :--- |
| Course Name $:$ | Discrete Mathematical Structures | Time $: \mathbf{0 3 ~ h r s ~}$ |
| Course Code $:$ | CSEG2006 | Max. Marks : $\mathbf{1 0 0}$ |
| Nos. of page(s) $:$ | $\mathbf{3}$ | |
| Instructions: Attempt all the questions. | | |

SECTION A

Marks CO

Q1. Determine whether the function $T: R^{2}->R^{2}$ is linear transformation. If yes, prove it; if not, provide a counterexample to one of the properties:

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{2} \\
y^{2}
\end{array}\right]
$$

[4] CO3

Q2. A sequence $d_{1}, d_{2}, \ldots, d_{n}$ is called graphic if it is the degree sequence of a simple graph. Determine whether each of these sequences is graphic. For those that are, draw a graph having the given degree sequence.
[4] CO 4
a) $5,4,3,2,1,0$
b) $6,5,4,3,2,1$

Q3. Prove undirected graph has even number of vertices with odd degree.
[4] CO4
Q4. Consider the following relation R on Z , determine whether the relation is reflexive, symmetric or transitive, and specify the equivalence classes if R is an equivalence relation on Z:

$$
(a, b) € R \text { if } a+b \text { is even }
$$

Q5. Prove that $\sqrt{ } 2$ is irrational by giving a proof by contradiction.

SECTION B

Q6. Let $\boldsymbol{V}=\mathbf{R}^{2}$, and let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbf{V}$ such that $\boldsymbol{u}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right)$ and $\boldsymbol{v}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$. Define addition as $\boldsymbol{u}+\boldsymbol{v}=\left(\boldsymbol{u}_{1} \boldsymbol{v}_{1}, \boldsymbol{u}_{2} \boldsymbol{v}_{2}\right)$ and define scalar multiplication by scalar a to be $\boldsymbol{a} \boldsymbol{u}=\left(\boldsymbol{a} \boldsymbol{u}_{1}\right.$, $\boldsymbol{a} \boldsymbol{u}_{2}+1$). Determine whether or not this set under these operations is a vector space.
or
Find the standard matrix for the stated composition of linear operators on R^{2}
(a) A rotation of 90°, followed by a reflection about line $y=x$.
(b) An orthogonal projection on the y -axis, followed by a contraction with factor $\mathrm{k}=$ 0.5 .
(c) A reflection about the x -axis, followed by a dilation with factor $\mathrm{k}=3$.

Q7. What is the weight of a minimum spanning tree of the following graph? Apply the
[8] CO5 Kruskal's algorithm.

Using Dijkstra's Algorithm, find out the shortest distance from the source vertex 'S' to the rest of the vertices in the given graph. Also, write the order in which all the vertices of the graph are visited.

Q8. Solve the following recurrence relation
$a_{n+2}-2 a_{n+1}+a_{n}=2^{n}+5$
$\mathrm{a}_{0}=2, \mathrm{a}_{1}=1$
[8] CO2
Q9. Let f, g and h be functions from N to N defined by

$$
f(x)=x, g(x)=x^{2}+1 \text { and } h(x)=2 x+1 \text { for every } x € \mathrm{~N} .
$$

a) Determine whether each function is one-to-one or onto.
b) Find $h o(g \circ f)$ and $(h \circ g)$ o f, and verify the Associative law for composition of
[8] CO1 functions.

Q10. Find the chromatic number for the following graphs.
a) K_{3}
b) C_{5}
c) C_{3}
d) W_{3}
e) W_{4}
f) $\mathrm{K}_{3,3}$
g) Q_{2}
h) Tree

Q11. Determine whether $\mathrm{T}_{1} \mathrm{oT}_{2}=\mathrm{T}_{2} \mathrm{O} \mathrm{T}_{1}$
(a) $T_{1}: R^{2} \rightarrow R^{2}$ is the orthogonal projection on the x-axis, and $T_{2}: R^{2} \rightarrow R^{2}$ is the orthogonal projection on the y-axis.
(b) $T_{1}: R^{2} \rightarrow R^{2}$ is the rotation through an angle α_{1}, and $T_{2}: R^{2} \rightarrow R^{2}$ is the rotation through an angle α_{2}.
(c) $T_{1}: R^{2} \rightarrow R^{2}$ is the orthogonal projection on the x-axis, and $T_{2}: R^{2} \rightarrow R^{2}$ is the rotation through an angle α.

Q12. Let G be a connected planar graph with p vertices, q edges, and r regions. Then prove that
$\mathrm{p}-\mathrm{q}+\mathrm{r}=2$.
or
Write short note on the following:
(a) Kuratowski’s non-planar graphs
(b) Chromatic Polynomial
(c) Chromatic Polynomial using Decomposition Theorem
(d) Cut set

