

Q 8	let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}=\{1,2,3,4\}$ and $\mathrm{E}=\{(1,2),(2,3),(2,4),(3,4)\}$ and suppose that $\mathrm{k}=3$, devise an algorithm such that adjacent nodes get different colors.	10	$\begin{gathered} \mathrm{CO2}, \\ \mathrm{CO} \end{gathered}$
Q 9	Binomial coefficients are coefficients of the binomial formula: $(a+b)^{n}=C(n, 0) a^{n} b^{0}+\ldots+C(n, k) a^{n-k} b^{k}+\ldots+C(n, n) a^{0} b^{n}$ $\mathrm{C}(\mathrm{n}, \mathrm{k})$, the number of combinations of k elements from an n -element set $(0 \leq \mathrm{k} \leq$ n), Compute $C(6,3)$ by applying the dynamic programming algorithm (OR) Consider the travelling salesperson problem given by following cost matrix $\left(\begin{array}{ccccc} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{array}\right)$ Obtain the optimum tour using dynamic reduction method. Draw a portion of state space tree using LCBB.	10	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$
SECTION-C (All Questions are Compulsory, Each Question Carries 20 Marks)			
Q 10	Compute All Pairs Shortest Path for the following graph.	20	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} \end{aligned}$
Q 11	You are given two sorted arrays of lengths m and n. give a $O(\log m+\log n)$ time algorithm for computing the k-th smallest element in the union of the two arrays. Keep in mind that the elements may be repeated. (OR) Let T be a text of length n, and let P be a pattern of length m. Describe an $O(n+m)$ time method for finding the longest prefix of P that is a substring of T .	20	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} 3 \end{aligned}$

Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 $\right]$ Semester: 1			
SECTION A (All Questions Compulsory, Each Question Carries 4 Marks)			
S. No.		Marks	CO
Q 1	How do you justify that divide and conquer algorithms takes less time complexity in comparison with brute force algorithms.	4	CO1
Q2	Explain optimal substructure through an example	4	CO3
Q3	Compute the MST using Prim's algorithm for the following graph	4	CO2
Q4	Explain time-space trade off and growth functions.	4	CO1
Q5	Discuss any two problems where approximation algorithms are needed	4	CO4
SECTION B (All Questions Compulsory, Each Question Carries 10 Marks)			
Q 6	Solve the following recurrence relations using recursion tree method a) $\mathrm{T}(\mathrm{n})=8 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}$ b) $T(n)=4 T(n / 2)+n$	10	CO1
Q 7	Devise an algorithm and explain to determine bi-connected Components. Prove the theorem that two bi-connected components can have at most one vertex as common and this vertex is an articulation point.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} \end{aligned}$

Q 8	Consider the following items with their weights and profits and knapsack capacity as 5. Apply the Greedy strategy to fill the knapsack with maximum benefit,			10	$\begin{aligned} & \mathrm{CO}, \\ & \mathrm{CO} 2 \end{aligned}$
	Item	Weight	Profit		
	1	1	15		
	2	5	10		
	3	3	9		
	4	4	5		
Q 9	Draw the state space tree for 4 queen's problem (OR) Consider the travelling salesperson problem given by following cost matrix $\left[\left.\begin{array}{ccccc} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{array} \right\rvert\,\right.$ Obtain the optimum tour using dynamic reduction method. Draw a portion of state space tree using LCBB.				
				10	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$
SECTION-C (All Questions Compulsory, Each Question Carries 20 Marks)					
Q 10	Find an optimal parenthesization of a matrix-chain product for 4X10, 10X3, 3X12, 12X20 and 20X7. Justify dynamic programming solution takes less time complexity for this problem when we compare with brute force approach.			20	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \end{aligned}$
Q 11	Let $\mathrm{m}=31$ and $\mathrm{w}=\{7,11,13,24\}$ draw a portions of state space tree using algorithm sum_subset(). Clearly show the solutions obtained. (OR) Let T be a text of length n, and let P be a pattern of length m. Describe an $O(n+m)$ time method for finding the longest prefix of P that is a substring of T .			20	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO} 3 \end{gathered}$

