Name:					
Enrolme	nt No:	\mathbf{v}	UPES		
	Algorithm Design and Analysis (CSEG nme: M.Tech (CSE) 3 hrs. ions:	xamination, December 67001) ECTION A	2018 Semester: 1 Max. Marks	:: 100	
Q 1	Write the control abstract for divide and co	onquer algorithms		Marks	CO CO1
Q 1 Q2	What is overlapping sub problems explain	1 0		4	CO1 CO3
Q3	Using the below graph, If Kruskal's algori Spanning Tree, which of the following edg	ges will not be included:		4	CO2
Q4	 Show the following equalities are correct: a) 5n²- 6n=φ(n²) b) N!=O(nⁿ) 			4	CO1
Q5	How can you prove that a problem P is NF	P-Complete		4	CO4
	(All Questions are Compuls			· · · · · ·	
Q 6	Find an optimal Huffman code for the foll a:50 b:25 c:15 d:40 e:75	owing a set of frequencies	es:	10	CO3, CO2
Q 7	Consider the problem of Fibonacci series (a) Devise Brute force algorithm (b) Devise Divide and Conquer alg (c) Compare (a) & (b) algorithms		nplexity	10	CO1

Q 8	let G = (V, E) where V = $\{1, 2, 3, 4\}$ and E = $\{(1, 2), (2, 3), (2, 4), (3, 4)\}$ and suppose that k = 3, devise an algorithm such that adjacent nodes get different colors.		CO2, CO3
Q 9	Q 9Binomial coefficients are coefficients of the binomial formula: $(a + b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^n$ C(n, k), the number of combinations of k elements from an n-element set $(0 \le k \le n)$, Compute C(6, 3) by applying the dynamic programming algorithm (OR)Consider the travelling salesperson problem given by following cost matrix $\begin{pmatrix} 0 & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix}$ Obtain the optimum tour using dynamic reduction method. Draw a portion of state space tree using LCBB.		
	SECTION-C (All Questions are Compulsory, Each Question Carries 20 Marks)		
Q 10	Compute All Pairs Shortest Path for the following graph.	20	CO2, CO3
Q 11	You are given two sorted arrays of lengths m and n. give a O(log m + log n) time algorithm for computing the k-th smallest element in the union of the two arrays. Keep in mind that the elements may be repeated. (OR) Let T be a text of length n, and let P be a pattern of length m. Describe an O(n+m) time method for finding the longest prefix of P that is a substring of T.	20	CO2, CO3

Name:					
Enrolme	Name: Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018				
	Algorithm Design and Analysis (CSEG7001) Semester: 1	l			
Programme: M.Tech (CSE) Time: 03 hrs. Max. Marks Instructions:					
	SECTION A (All Questions Compulsory, Each Question Carries 4 Marks)				
S. No.		Marks	CO		
Q 1	How do you justify that divide and conquer algorithms takes less time complexity in comparison with brute force algorithms.	4	CO1		
Q2	Explain optimal substructure through an example	4	CO3		
03	Compute the MST using Prim's algorithm for the following graph				

~		=	
Q3	Compute the MST using Prim's algorithm for the following graph		
	$\begin{array}{c} A \\ 5 \\ 7 \\ F \\ 8 \\ G \\ 4 \\ E \end{array}$	4	CO2
Q4	Explain time-space trade off and growth functions.	4	CO1
Q5	Discuss any two problems where approximation algorithms are needed	4	CO4

SECTION B

(All Questions Compulsory, Each Question Carries 10 Marks)				
Q 6 Solve the following recurrence relations using recursion tree method a) $T(n)=8T(n/2)+n^2$ b) $T(n)=4T(n/2)+n$		10	CO1	
Q 7	Devise an algorithm and explain to determine bi-connected Components. Prove the theorem that two bi-connected components can have at most one vertex as common and this vertex is an articulation point.	10	CO2, CO3	

Q 8	Consider the following items with their weights and profits and knapsack capacity as 5. Apply the Greedy strategy to fill the knapsack with maximum benefit,				
	Item	Weight	Profit	10	
	1	1	15		CO3, CO2
	2	5	10		
	3	3	9		
	4	4	5		
Q 9	Draw the state space tree for 4 queen's problem (OR) Consider the travelling salesperson problem given by following cost matrix 0 20 30 10 11				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ur using dynamic reduction n	nethod. Draw a portion of state	10	CO3, CO4
	(All Quest	SECTION-C tions Compulsory, Each Qu			
Q 10	Find an optimal parenthesization of a matrix-chain product for 4X10, 10X3, 3X12, 12X20 and 20X7. Justify dynamic programming solution takes less time complexity for this problem when we compare with brute force approach.			20	CO2, CO3
Q 11	Let $m=31$ and $w=\{7,11,13,24\}$ draw a portions of state space tree using algorithm sum_subset(). Clearly show the solutions obtained.			_	
	(OR)			20	CO2, CO3
	Let T be a text of length n, and let P be a pattern of length m. Describe an O(n+m) time method for finding the longest prefix of P that is a substring of T.				