Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Formal Language and Automata (CSEG345) Semester: V Programme: B.Tech (CS+All IBM courses)

Time: 03 hrs.

Max. Marks: 100

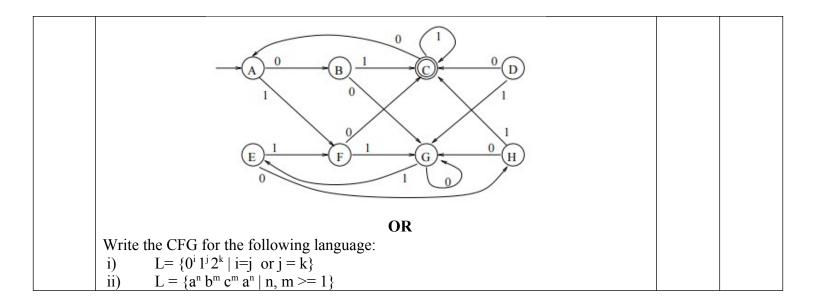
SECTION A				
S. No.		Marks	СО	
Q 1	Draw the state diagram for NFA accepting language $L=(ab)^* (ba)^* U aa^*$.	4	CO1	
Q 2	Prove that the PDA that accept strings through empty stack and final state mechanism are equivalent.	4	CO2	
Q 3	Design a FA that accepts strings containing exactly 1 over alphabet $\{0, 1\}$.	4	CO1	
Q 4	"NPDA is more powerful than DPDA but DPDA is more efficient then NPDA" justify the statement with example.	4	CO2	
Q 5	How do you define Instantaneous Description for Turing Machine?	4	CO3	
	SECTION B			
Q 6	Prove that the problem of determining whether a given context-sensitive language is context-free is unsolvable.	10	CO4	
Q 7	Convert the following grammar in to CNF: $S \rightarrow AACD$ $A \rightarrow aAb$ $C \rightarrow aC a$ $D \rightarrow aDa bDb \epsilon$	10	CO2	
Q 8	Give the moore machine for the input from $(0+1+2)^*$ which prints the residue module 5 of the input treated as a ternary (base 3, with digits 0,1,2) number. Convert it into mealy machine.	10	CO1	
Q 9	Write transition rules for a PDA corresponding to the following Context Free Language: $L = \{wcw^{R} w \text{ is in } (0+1)^{*} \text{ and } w^{R} \text{ represents reverse } w\}.$ Also, obtain Context Free grammar for this PDA.	10	CO2	

Q 10	OR Design a PDA that will accept the following language L= $\{a^i b^j c^k j = i+k\}$ SECTION-C Construct Turing machine to accept the language L= $\{0^n 1^n 2^n n \ge 0\}$.	20	СОЗ
Q 11	Explain the Myhill-Nerode Theorem. Apply the theorem to minimize the following given DFA. $ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	20	C01

Name:

Enrolment No:

UPES


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Formal Language and Automata (CSEG345) Semester: V Programme: B.Tech (CS+All IBM courses) Time: 03 hrs.

Max. Marks: 100

SECTION A

S. No.		Marks	CO
Q 1	Prove that the Language $L = \{ a^n b^m \mid m \neq n \}$ is not regular by using Pumping Lemma.	4	CO1
Q 2	Differentiate One Stack PDA and Two Stack PDA.	4	CO2
Q 3	Write a regular expression for the language containing all strings of 0 and 1 that begin with 1 and contain even number of 0.	4	CO1
Q 4	NPDA is not equivalent DPDA in terms of language recognition. Explain.	4	CO2
Q 5	Justify the statement "Turing machine is a language acceptors".	4	CO3
	SECTION B		
Q 6	Explain Church's Thesis.	10	CO4
Q 7	Convert the following grammar in to CNF: $S \rightarrow ABA$ $A \rightarrow aA \epsilon$ $B \rightarrow bB \epsilon$	10	CO2
Q 8	Give the moore machine, which calculate residue mod-4 for each binary string treated as binary integer.	10	CO1
Q 9	Construct PDA to accept the language. L= { $a^{n}b^{2n} n \ge 1$ }. OR Design a PDA that will accept the following language L= { $a^{i}b^{j}c^{k} j=i+k$ }	10	CO2
	SECTION-C		
Q 10	Design a Turing Machine that recognizes the language of all strings of even length over alphabet {a,b}.	20	CO3
Q 11	Construct a minimum state automaton for the following DFA-	20	CO1

