

Name of Examination	:	MID		END		SUPPLE
(Please tick, symbol is given)		MID		END	V	SUPPLE
Name of the College (Please tick, symbol is given)	:	COES	✓	CMES		COLS
Program/Course	:	B.Tech ET+ LLB IPR				
Semester	:	XII				
Name of the Subject	:	Mechanics of Material				
Subject Code	:	GNEG 253				
Name of Question Paper Setter	:	Nirmalya Tripathi and Avani Kumar Upadhyay				
Employee Code	:	40001123 and 40001345				
Mobile & Extension	:	7895275715 and 8447736508				
Note: Please mention addit Table/Graph Sheet etc. else			•	•	luring exa	mination such as
	I	FOR SR	E DE	PARTMENT	1	
Date of Examination			•			
Time of Examination			:			
No. of Copies (for Print)			:			

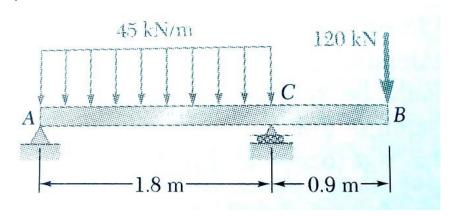
Note: - Pl. start your question paper from next page

Roll No: -----

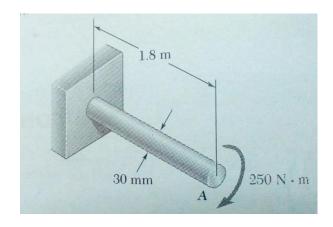
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

XII

End Semester Examination, April 2017


Program/course: B.Tech ET+ LLB IPR
Subject: Mechanics of Material

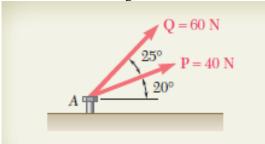
Max. Marks


Subject: Mechanics of Material Max. Marks : 100
Code :GNEG 253 Duration : 3 Hrs.
No. of page/s: 4

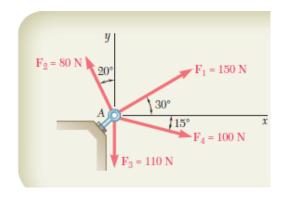
Section-A (Mechanics of Solid)

 Draw the shear force and bending moment diagram for the beam shown below and determine the maximum absolute value the shear stress and bending moment.
 (15)

- 2. A polystyrene rod of length 300 mm and diameter 12 mm is subjected to a 3-kN tensile load. Knowing that young's modulus, E = 3.1 GPa, determine the elongation of the rod and normal stress in the rod. (15)
 - 3. For a solid steel shaft shown below (G = 77 GPa), determine the angle of twist at A. Solve the same assuming the steel shaft is hollow with 30-mm outer diameter and 20 mm inner diameter. (20)

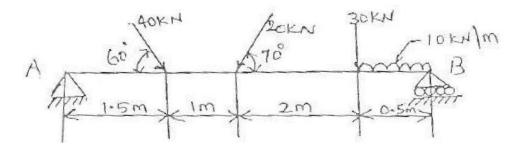


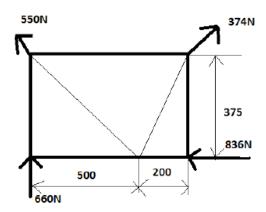
Section-B (Engineering Mechanics)


4) Solve all parts

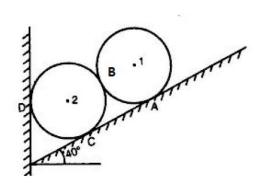
(5X4=20)

a) Determine the resultant of the two forces acting on the bolt.

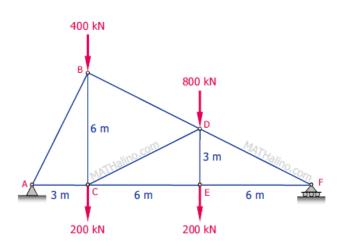

b) Determine the resultant and its angle in the given force system.


c) Two cables are tied together at C and loaded as shown determine the tension in the cables.

d) Find reactions at points A & B for the beam shown



5) Four forces act on a 700mm X 375mm plate as shown in fig. a) Find the resultant of these forces b) Locate the two points where the line of action of the resultant intersects the edge of the plate. (10)



6) In the given figure weights and the radius of the given cylinders are 250 N and 150mm respectively. Find the reactions at point A, B,C and D.

(10)

7) Find the force in the each member of the given truss

(10)