Roll No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End Semester Examination - April, 2017

Program/Course: B. Tech. Chemical Engineering (RP)
Subject: Process Modelling and Simulation
Code: CHEG439
No. of Pages: 2(Two)

Semester–VIII Maximum Marks : 100 Durations : 3 Hrs.

Section-A (3x20 = 60 marks)Answer all Three Questions

- 1. a) A fluid of density, ρ , is flowing through a pipe of diameter, d, with average velocity, v. Express the Reynolds Number, Re, of the Fluid in terms of its dynamic viscosity, μ , the kinematic viscosity, ν , the volumetric flow rate, Q, and the mass flow rate, \dot{m} . (5)
 - **b**) Consider the second order reaction

$$\mathbf{A} + \mathbf{B} \xrightarrow{k} \mathbf{C}$$

is being carried out in a batch vessel, where one mole of the reactant **A** and one mole of the reactant **B** react to produce one mole of the product **C** with the reaction rate, r, given by $r = kC_AC_B$, where k is the second order rate constant. The initial concentrations of the **A** and the **B**, are respectively given by C_{Ao} and C_{Bo} . Prove that the transient concentration, C_C of the product, **C**, is given by (15)

$$\boldsymbol{C}_{\mathrm{C}} = \boldsymbol{C}_{\mathrm{Ao}} \boldsymbol{C}_{\mathrm{Bo}} \; \frac{\exp\left[\left(\boldsymbol{C}_{\mathrm{Bo}} - \boldsymbol{C}_{\mathrm{Ao}}\right) \boldsymbol{k} \boldsymbol{t}\right] - 1}{\boldsymbol{C}_{\mathrm{Bo}} \left(\exp\left[\left(\boldsymbol{C}_{\mathrm{Bo}} - \boldsymbol{C}_{\mathrm{Ao}}\right) \boldsymbol{k} \boldsymbol{t}\right]\right) - \boldsymbol{C}_{\mathrm{Ao}}}$$

2. **a**) Show that

 $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{x^2}{2}\right] = 1$

Hint: use the relation: $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

- b) Write a brief note on three Laws of Conservation. Write the definitions of the Mass diffusivity, \mathcal{D} , the Kinematic Viscosity, $\boldsymbol{\nu}$, and the Thermal Diffusivity, $\boldsymbol{\lambda}$. Write the units of Mass Diffusivity, Kinematic Viscosity and Thermal Diffusivity respectively, in fundamental dimensions. (10)
- 3. A consecutive first order reaction is occurring in a batch vessel of volume V isothermally, with the following scheme $k_1 k_2$

$$\mathbf{A} \xrightarrow{k_1} \mathbf{B} \xrightarrow{k_2} \mathbf{C}$$

- Formulate the governing differential equations to determine the $C_{\rm A}$, $C_{\rm B}$ and the $C_{\rm C}$ for the A, B and C respectively, as function of time. The initial conditions are given by $C_{\rm A}(0) = C_0, C_{\rm B}(0) = 0$ and $C_{\rm C}(0) = 0$. (10)
- Solve the equation for $C_{\rm A}$, $C_{\rm B}$ and $C_{\rm C}$ against time.

Continued in the next page

(10)

(10)

Section-B (1x40 = 40 marks)

Answer any **one** Questions

- 4. a) In a Semi-Batch (no out-flow) Vessel, the limiting reactant **A** with inlet concentration, C_{in} (mole/volume) with constant flow rate, α (volume/time), is being dosed in the reactor where the other reactant **B**, is already present in large excess ($N_B(0)$ | mole), so that the reaction can be deemed as *pseudo* first order reaction. The initial volume of the reacting mixture is V_0 (volume). The initial concentration of the reactant **A**, C_{Ao} , is zero in the vessel.
 - Formulate the governing differential equation to calculate the transient profile of the reactant **A** concentration, $C_{\mathbf{A}}$. (10)
 - Write the assumptions made to formulate the model.
 - Solve the equation for $C_{\mathbf{A}}$. (15)
 - b) In a double pipe heat exchanger with one dimensional co-current flow, the spatial temperature difference, $\Delta T (= T_{\rm h} T_{\rm c})$ between the hot and the cold fluid, is given by (10)

$$\Delta T = \Delta T_{
m in} \exp \left[-eta x
ight]$$

where $\Delta T_{in}(=T_{hin}-T_{cin})$ is the difference in temperature at the inlet. The exchanger's total length is L and β is a constant parameter. Calculate the average difference in temperature, $\widehat{\Delta T}$ over the length L, where ΔT_{out} represents the difference in temperature at the outlet (at x = L). Prove that $\widehat{\Delta T}$ is the Logarithmic Mean Temperature Difference (LMTD).

5. a) Solve the following parabolic partial differential equation

$$\frac{\partial C}{\partial t} = \frac{\partial^2 C}{\partial x^2}$$

with initial condition
and the boundary conditions
$$C = 0 \text{ at } t = 0 \text{ for } x > 0$$

$$C = C_0 \text{ at } x = 0 \text{ for } t \ge 0$$

$$C = 0 \text{ for } x \to \infty \text{ for } t \ge 0$$

Hint: use the similarity variable $\eta = \frac{x}{2\sqrt{t}}$ to convert the partial differential equation into an ordinary differential equation.

b) A large empty cylindrical tank with volume V and having cross-sectional area A is being filled up with a liquid of constant density, ρ . The input volumetric flow rate of the liquid is fixed at F_{max} . Calculate the time, t_{f} for filling the tank to its brim. (10)

(5)

(30)