Roll No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 THE NATION BUILDERS UNIVERSITY

End Semester Examination, April, 2017

Program/course: B.Tech - MSENT
Subject: Nano Electronics \& Robotics
Code :MTEG-422
No. of page/s: 03
Note:
All questions are compulsory.
Section A: 5 X 4= 20 Marks
Section B: 10X4=40 Marks
Section C: $20 \times 2=40$ Marks

Section A

1. State the laws of robotics as given by Asimov.
2. Find out the holding force and velocity of movement of piston of a single acting hydraulic actuator if fluid pressure is 100 bar , diameter of piston is 50 mm and flow rate is $0.3 \mathrm{~m}^{3} / \mathrm{min}$.
3. Explain briefly about the characteristics of actuators.
4. Discuss about stroke and reach of a robotic arm with suitable example.

Section B

5. The homogeneous transformation matrices between frames $\{\mathrm{i}\}-\{\mathrm{j}\}$ and $\{\mathrm{i}\}-\{\mathrm{k}\}$ are:

$$
\begin{aligned}
& { }^{j} T_{i}=\left[\begin{array}{cccc}
0.500 & -0.866 & 0 & 11 \\
0.866 & 0.500 & 0 & -1 \\
0 & 0 & 1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad{ }^{k} T_{i}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0.866 & -0.500 & 20 \\
0 & 0.500 & 0.866 & -10 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { Determine }{ }^{j} T_{k}
\end{aligned}
$$

6. A vector $P=3 i-2 j+5 k$ is first rotated by 90° about x -axis, then by 90° about z -axis and finally translated by $-3 i+2 j-5 k$. Determine the new position of the vector.

OR

Determine the rotation matrix for a rotation of frame $\{2\}$ with respect to frame $\{1\}$ by 45° about y-axis, followed by a rotation of 120° about z -axis and a final rotation of 90° about x -axis.
7. Explain in detail about the different types of electrical actuators used in Robots.
8. In reference to LVDT:

As per the differential output $E_{o}=E_{s_{1}}-E_{s_{2}}=0$ at NULL position, where $E_{s_{1}}$ is output voltage of secondary coil S_{1} and $E_{s_{2}}$ is output voltage of secondary coil S_{2}. Although as per the characteristic graph for variation output voltage with linear displacement for an LVDT (shown below) as per actual practice there exists a small voltage at the null position. What are the probable reasons for the same?

Section C

9. For the 3-DOF manipulator arm as shown in Fig.1, assign frames and obtain the joint-link parametes (dH parameters). Also, determine the position of the tool tip with respect to the base frame $\{0\}$. Take the values of $\theta_{1}=30^{\circ}, \theta_{3}=45^{\circ}$, and $d_{2}=0.8 \mathrm{~m}$.

Fig. 1: A 3-DOF manipulator

In a 2-DOF robot, the DH parameters are as given below:

	θ	d	a	α
$0-1$	θ_{I}	0	l_{I}	0
$1-\mathrm{H}$	θ_{2}	0	l_{2}	0

The transformation matrix is given as:

$$
{ }^{0} T_{H}=\left[\begin{array}{cccc}
-0.2924 & -0.9563 & 0 & 0.6978 \\
0.9563 & -0.2924 & 0 & 0.8172 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

If the length of each link l_{1} and l_{2} is 1 m , calculate the values of θ_{l} and θ_{2} for the given location.
10. Explain why discrete histogram equalization technique does not, in general yield a flat histogram? Suppose that a digital image is subjected to histogram equalization. Show that a second pass of histogram equalization (on the histogram equalized image) will produce exactly the same result as the first pass.

Roll No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 THE NATION BUILDERS UNIVERSITY

End Semester Examination, April, 2017

Program/course: B.Tech - MSENT	Semester - VIII
Subject: Nano Electronics \& Robotics	Max. Marks : 100
Code :MTEG - 422	Duration $: \mathbf{3}$ Hrs

Subject: Nano Electronics \& Robotics
Code :MTEG-422
No. of page/s: 02

Note:

All questions are compulsory.
Section A: 5 X 4= 20 Marks
Section B: 10 X $4=40$ Marks
Section C: $20 \times 2=40$ Marks

Section A

1. Explain briefly about the different components of a robot.
2. Explain about hydraulic and pneumatic actuators as used in Robots.
3. A hydraulic rotary actuator is to be used for a twist joint. The outer and inner radii of vane are 80 mm and 20 mm and width of vane is 10 mm . Determine angular velocity and torque generated if pressure is 50 bar and flow rate is $8 \mathrm{~cm}^{3} / \mathrm{min}$.
4. Explain about different types of grippers used in robots.

Section B

5. Name and explain the basic four types of arm configuration in robots.
6. A point P in space is defined as ${ }^{B} P=(5,3,4)^{\mathrm{T}}$ relative to frame B which is attached to the origin of the reference frame A and is parallel to it. Apply the following transformations to frame B and find

- Rotate 90° about x-axis, then
- Translate 3 units about y-axis, 6 units about z-axis, and 5 units about x-axis, then
- Rotate 90° about z -axis

Frame $\{2\}$ is rotated with respect to frame $\{1\}$ about x-axis by an angle of 60°. The position of the origin of frame $\{2\}$ as seen from frame $\{1\}$ is ${ }^{1} D_{2}=\left[\begin{array}{lll}7 & 5 & 7\end{array}\right]^{T}$. Obtain the transformation matrix ${ }^{1} T_{2}$ which describes the frame $\{2\}$ relative to frame $\{1\}$. Using the matrix, also determine the description of frame $\{1\}$ relative to frame $\{2\}$.
7. A vector $P=3 i-2 j+5 k$ is first rotated by 90° about x -axis, then by 90° about z -axis and finally translated by $-3 i+2 j-5 k$. Determine the new position of the vector.
8. The output voltage of a LVDT is 1.5 V at maximum displacement. At a load of $0.5 \mathrm{M} \Omega$, the deviation from linearity is maximum and it is $\pm 0.003 \mathrm{~V}$ from a straight line through origin. Find the linearity at the given load.

Section C

9. For the 3-DOF robotic manipulator arm shown in Fig.1, assign frames to each of the links and determine the joint-link parameters and, obtain the direct kinematic model.

Fig.1: 3-DOF PRP manipulator arm
10. In a 2-DOF articulated robot arm as shown in Fig.2, find the link-joint parameters and formulate the transformation matrix in symbolic form. If the transformation matrix is given in numerical form as shown below and length of each link a_{1} and a_{2} is 1 m , calculate the values of θ_{1} and θ_{2} for given location.

$$
{ }^{0} T_{H}=\left[\begin{array}{cccc}
-0.2924 & -0.9563 & 0 & 0.6978 \\
0.9563 & -0.2924 & 0 & 0.8172 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Fig.2: 2-DOF articulated robot arm

