Roll No	0:	
---------	----	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.Tech, ASE-A Semester –IV

Subject (Course): Signals and systems

Course Code : ELEG 201

Max. Marks : 100

Duration : 3 Hrs

No. of page/s:3

	SECTION A		
S. No.		Marks	CO
Q 1	 (a) Is the sum of two periodic signals periodic? Justify the answer (b) sketch the signal x(t)=t²u(t) and determine whether it is energy signal or power signal. 	[2+3]	CO1
Q2	Prove the time scaling property of continues time Fourier transform and hence find the Fourier transform of $x(t)=e^{-0.5t}u(t)$.		
Q3	Perform the linear convolution of the input sequence $x(n)=\{2,-1,2,4\}$ and impulse response $h(n)=\{1,-2,4,-9\}$.		
Q4	response h(n)={1,-2,4,-9}. By applying the final value theorem of Z-transform, find $x (\infty)$ If $x(z)=\frac{2z+3}{(z+1)(z+3)(z-1)}$		CO3
05	Note: Attempt any one question from Qno 8 & Qno 9 Obtain the trigonometric Fourier series for the waveform shown in the below figure 1	10	CO2
Q5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO2
	Figure 1		

Q6	A system is characterized by the differential equation $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = 2x(t)$ solve for y(t) for t≥0 when x(t)=u(t),y(0 ⁻)=2 and dy(0 ⁻)/dt=12	10	CO4
Q7	Design a causal discrete-time LTI system with the property that if the input is $x(n)=(\frac{1}{3})^nu(n)-\frac{1}{5}(\frac{1}{3})^{n-1}u(n-1)$, then the output is $y(n)=(\frac{1}{2})^nu(n)$ determine the transfer function H(Z), the impulse response h(n) and the frequency response H(e^{jw}) of the system that satisfies the condition	10	C04
Q8	 (a)Distinguish between i) periodic and aperiodic signals ii)deterministic and random signals iii)Even and odd signals. (b) Find the inverse Fourier transform of X(w)= jw/¿i 		C02
Q9	Determine the Continues time Fourier transform of the following signal shown in figure 2 $ \frac{x(t)}{4} $ Figure 2	10	CO2
	SECTION-C 40 Marks		
	Attempt any two questions and each carry equal marks.		
Q10	 (a) A causal LTI system is described by the difference equation y(n)=x(n)+0.81x(n-1)-0.81x(n-2)-0.45y(n-2) Find the system function and frequency response of the system. Plot the poles and zeroes and indicate the ROC.Also determine the stability and impulse response of the system. (b) Find the Continues time Fourier transform of the signal x(t)= 5 sin²(3t) 	13+7	CO4

Q11	(a) Find the inverse Laplace transform of the following $X(S) = \frac{3s^2 + 22s + 27}{(s \cite{le} \cite{le}$	[12+8]	C05
Q12	(a) Check whether the following systems are static/dynamic, causa/non-causal, time variant/time invariant i) $\frac{d^3y(t)}{dt^3} + 2\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 2y^2(t) = x$ (t-1) ii) $y(t) = at^2x(t) + btx(t+4)$ (B) Prove that the sequence (a) $x(n) = a^nu(n)$ and (b) $x(n) = -b^nu(-n-1)$ have the same $X(Z)$ and differ only in ROC.Also plot their ROCs	10+10	C02