UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Chemical Reaction Engineering II Program: B.Tech. CE+RP Time: 03 hrs. Semester: VI

Max. Marks: 100

Instructions: (i) This question paper has three sections- A, B and C. All questions of each section are compulsory. (iii) Attempt all the sub-parts of a question together.

SECTION A (20 Marks)

S. No.						Mark s	CO	
Q 1	Explain the step	5	CO5					
Q 2	How does catal	5	CO4					
Q 3	Discuss heat eff	Discuss heat effects during solid catalyzed reactions.						
Q 4	Derive the Lang	5	CO3					
			SECTION B (6	60 Marks)				
Q 5	What is effectiv Thiele Modulus	ess factor and	12	CO4				
Q 6	The catalytic Is run at 3.2 atm and uses a feed							
	Run	1	2	3	4	12	CO 5	
	C _{Ain} , mol/liter C _{Aout} , mol/liter	0.100	0.08	0.060	0.040	12		
Q 7	unreacted A. the		follows:	I reports on the surfac	a of a solid			
Ų /	according to a r							
	Where C_{Ae} is the expression for the table of	12	CO 2					
Q 8	reaction steps.		versible reaction are					
	0 11 1	•	•• •			12	CO 5	

			· ·	h-solids, e follow:			Deter	mine the kinet	ics of reaction and		
	CA	1.00 0	0.802	0.675	0.532	0.422		0.363]		
	T, hr	0	0.25	0.5	1	2		(∞)			
Q 9	The concentration reading in given table represents a continuous response to a pulse input in a closed vessel and is well represented by the dispersion model. Calculate the vessel dispersion number D/uL. The C versus t tracer response of this vessel is: [12]										
	t, min	0	5	10	15	20	25	30	35	12	CO1
	, gm/l it		3	5	5	4	2	1	0		
Q 10	SECTION-C (20 Marks) (a). The oxidation of methanol to formaldehyde in presence of solid oxide catalyst was studied with a recycle. The rate of circulation of the mixture (with a pump) was much higher than feeding rate and removal of product. The following reaction takes place:										
	$CH_{3}OH + 0.5 O_{2} \longrightarrow CH_{2}O + H_{2}O$ $CH_{2}O + 0.5O_{2} \longrightarrow CO + H_{2}O$ $\overline{CH_{2}O + 0.5O_{2}} \longrightarrow CO + 2H_{2}O$										
	The gas flow rate was 10 liters/hr, catalyst volume = 5 cm ³ , C_{Ao} = 6.5 by volume, overall conservation 98% and yield of formaldehyde as 0.9%. Calculate the rate constants for both the reactions in presence of catalyst.								20	CO4	
	(b) In the case of catalyst decaying, it is practiced to feed with the new catalyst to keep the level of activity constant. The relation between conversion, activity of catalyst and catalyst weight is given by										
	$W = \frac{FAo * XA}{-rA} = \frac{FA \ 0 * XA}{\acute{a} \ ko \ CA^n}$										
	Where, \dot{a} , represents mean activity in the reactor. Determine the mean activity for first order decay in C.S. T. R.										