UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Thermal Engineering Program: **B.Tech.** Mechanical, MD, PE, TH, MSNT Time: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions from section A (each carrying 5 marks), section B (comprises of four questions each carrying 10 marks) and section C (comprises of two questions each carrying 20 marks)

S. No.		Marks	CO
Q 1	Show the Reheat cycle and regenerative feed water heating cycle on T-S diagram. Highlight their significance on the performance of steam power plant.	5	CO1
Q.2	What do you mean by supersaturated flow through steam nozzles? Discuss the causes of supersaturation phenomenon	5	CO5
Q.3	Why steam turbines are compounded? What are the different methods of compounding?	5	CO6
Q.4	Explain single pass and double pass surface condenser? In steam power plant which types of steam condenser are used and why?	5	CO7
	SECTION B		
Q.5	The volumetric analysis of flue gas is given as C_2H_6 22.6%, CH_4 73.6%, CO_2 2.4% and N_2 1.4%. Assuming combustion air to be dry and in 25% excess, find (a) The molecular weight of the combustion products, (b) the dry flue gas analysis based on CO_2 , O_2 and N_2 .	10	CO3
Q.6	Explain open feed water heater and closed feed water heater. Draw layout of steam power plant including open and closed feed water heater. Also, draw T-S diagram of layout.	10	CO2
Q.7	Draught produced by the chimney is 2 cm of water column. Temperature of flue gas is 300°C and ambient temperature 33°C. The flue gases formed per kg of fuel burnt is 24 kg. Neglect the losses and take the diameter of chimney as 1.75 m. Calculate: (i) Height of chimney in m and (ii) Mass of flue gases flowing through the chimney in kg/min.	10	CO4
Q.8	Explain is the effect of air leakage in steam condenser (surface type)? Explain the method by which air can be removed from the steam condenser? OR What is cooling tower? How does cooling tower work and what are the different types of cooling tower?	10	C07
	SECTION-C		
Q.9	A convergent divergent nozzle receives steam at 5 bar, 200°C and expand	20	CO5

SECTION A

Semester: IV

Q.10 In a r	 When the flow is supersaturated with pv^{1.3}= constant Degree of subcooling and degree of supersaturation for part (ii) nulti-stage parson's turbine at one of the stages, the rotor diameter is 125 cm eed ratio 0.72. The speed of the rotor is 3000 rpm. Determine: The blade inlet angle if the blade outlet angle is 22⁰. Diagram efficiency 		
turbin Steam Nozzl Mean Exit a First r Fixed Secon Steam	velocity at nozzle exit = 600 m/s e angle = 16° blade velocity = 120 m/s ngles: ow of moving blade = 18° guide blade = 22° d row of moving blade = 36° flow rate = 5 kg/s friction coefficient = 0.85 nine: The tangential thrust) The power developed	20	CO6