UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: High Voltage Engineering Course code: PSEG 309

Semester: 6th

Program: B.Tech (Electrical) Time: 03 hrs.

Time: 03 hrs. Max. Marks: 100

Instructions: Choices only in Question 7,8,9,10.

	SECTION A		
S. No.		Marks	CO
Q 1	A steady current of 400 μ A flows through the plane electrode separated by a distance of 0.5 cm when a voltage of 10 kV is applied. Determine the Townsend's first ionization coefficient if a current of 60 μ A flows when the distance of separation is reduced to 0.1 cm and the field is kept constant at the previous value.	5	CO1
Q 2	Explain liquid breakdown based on electroconvection	5	CO1
Q3	Discuss advantages and disadvantages of resonance transformer.	5	CO2,3
Q4	Discuss application and limitations of generating voltmeter.	5	CO2,3
	SECTION B (Choice in Question no.7 & 8)		
Q 5	Explain with neat diagram the principle of operation of an Electrostatic Voltmeter. Discuss its advantages and limitations for high voltage measurements.	10	CO4
Q6	Discuss and compare the performance of (i) resistance (ii) capacitance potential dividers for measurements.	10	CO3
Q7	An absolute electrostatic voltmeter has a movable circular plate 8 cms in diameter. If the distance between the plates during a measurement is 4 mm, determine the potential difference when the force of attraction is $0.2*10^{-3}*9.8$ N	10	CO3
	OR		
Q7	An impulse generator has eight stages with each condenser rated for 0.16 micro F and 125 kV. The load capacitor available is 1000 pF. Find the series resistance and the damping resistance needed to produce 1.2/50 micro sec impulse wave. What is the maximum output voltage of the generator, if the charging voltage is 120 kV?	10	CO3
Q8	List out various tests to be carried out on a cable and give a brief discussion of each test.	10	CO 3,4
	OR		
Q8	Describe the construction, principle of operation and application of a multistage Marx's Surge Generator	10	CO3,4

SECTION-C (Choice in both questions)				
Q 9	 A) An electrostatic voltmeter has two parallel plates. The movable plate is 10 cm in diameter. With 10 kV between the plates the pull is 5 × 10–3 N. Determine the change in capacitance for a movement of 1 mm of movable plate. B) A peak reading voltmeter is required to measure voltage up to 150 kV. The peak voltmeter uses an RC circuit, a micro ammeter and a capacitance potential divider. The potential divider has a ratio of 1200 : 1 and the micrometer can read up to 10 μA. Determine the value of R and C if the time constant of RC circuit is 8 secs. 	20	CO3,4	
	OR			
Q9	 A) A Rogowski coil is required to measure impulse current of 8 kA having rate of change of current of 10¹⁰ A/sec. The voltmeter is connected across the integrating circuit, which reads 8 volts for full-scale deflection. The input to the integrating circuit is from the Rogowski Coil. Determine the mutual inductance of coil, Capacitance of the integrating circuit. (R = 8 × 10³ Ω) B) A 20 kV, 50 Hz Schering Bridge has a standard capacitance of 106 μF. In a test on a bakelite sheet balance was obtained with a capacitance of 0.35 μF in parallel with a non-inductive resistance of 318 ohms, the non-inductive resistance in the remaining arm of the bridge being 130 ohms. Determine the equivalent series resistance and capacitance and the p.f. of the specimen. 	20	CO3,4	
Q10	A) Draw a neat diagram of high voltage Schering Bridge and analyses for balanced condition including derivation for R and C & draw its phasor diagram for (i) Series equivalent (ii) Parallel equivalent representation of the insulating material.	20	CO5	
	OR			
Q10	A) Describe various tests to be carried out on C.B.B) Discuss Rogowski Coil & Explain its principle of operation with diagram for measurement of high impulse currents.	20	CO5	

Name:	UPES
Enrolment No:	UPE3

_