UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Control system Engineering, ELEG 273 Program: B.Tech Electrical Time: 03 hrs.

Semester: IV

Max. Marks: 100

Instructions: Attempt all question, all questions are compulsory.

	SECTION A				
S. No.		Marks	СО		
Q 1	A closed loop system when subjected to a unit step input has an expression for the time response given by $c(t) = 0.5 + 2.25 e^{-4t} - 3.75 e^{-15t}$ Determine the overall transfer function of the system.	5	CO1		
Q 2	Define the role of PI controller cascaded with plant transfer function in terms of stability and steady state error.	5	CO5		
Q 3	Derive the transfer function representation from the generalized state space model.	5	CO4		
Q 4	Describe the gain margin and phase margin from sinusoidal response of system.	5	CO3		
	SECTION B				
Q 5	A positional control system has a damping ratio of 0.6. The damped frequency of oscillations is 8 Hz. Derive an expression relating the output and the time when the input is suddenly changed from 0 to θ_r and calculate the percentage maximum overshoot.	10	CO2		
Q 6	The overall transfer function of a unity feedback control system is given by $G(s) = \frac{10}{s^2 + 6s + 10}$ Find (a) K _p , K _v and K _a (b) Determine the steady state error if the input is $r(t) = 1 + t + t^2$	10	CO2		
Q 7	A linear time-invariant system is characterized by the homogeneous state equation, $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ Compute the solution of the homogeneous equation assuming the initial state vector, $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	10	CO5		
Q 8	Determine the transfer function Y/R for the block diagram below by signal flow graph technique	10	CO 1,2		

	$R(s) \xrightarrow{+} \xrightarrow{G_1} \xrightarrow{G_2} \xrightarrow{+} \xrightarrow{G_3} \xrightarrow{+} \xrightarrow{G_5} \xrightarrow{Y(s)}$		
Q 9	The open loop transfer function of a control system is given by $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+13)}$ (-4.2 is one of root of dk/ds equation)		
	Sketch the root locus and determine: (a) The angle of departure from complex poles (b) The stability condition	20	CO3
Q 10	The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{K}{s(1+0.5s)(1+0.2s)}$ It is desired that (i) For a unit step input the steady state error of the output position be less than 0.125 degrees/(degree/second) (ii) P.M. $\ge 40^{\circ}$. Design a suitable compensation network.	20	CO5