UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Physics II Course Code: PHYS1004 Program: B.Tech (SOE) Time: 03 hrs. Semester: II

Max. Marks: 100

Instructions:

- 1. All questions are compulsory.
- 2. This question paper has three sections; Section A, Section B, and Section C
- 3. In section A there are total 5 questions, each carrying 4 marks
- 4. In Section B there are total 4 questions, each carrying 10 marks. Question no. 9 is having an internal choice.
- 5. In Section C there are total 2 questions, each carrying 20 marks. Question no. 11 is having internal choice.
- 6. Draw suitable diagrams wherever required.
- 7. Your answer should be concise and to the point.
- 8. The CO's represents Course Outcomes which are for official purpose.

	SECTION A		
S. No.		Marks	CO
Q 1	Deduce the expression for time dilation using the Lorentz transformation equations.	4	CO1
Q 2	Estimate the energy of the electrons that we need to use in an electron microscope to resolve a separation of 0.27nm.	4	CO2
Q 3	Discuss the basic assumption of Planck's radiation law for black body radiations. (<i>Maximum 50 words</i>).	4	CO1
Q 4	Illustrate that in a system of fermions at T=0 K, all the states of $E \le E_F$ are occupied and all states $E \ge E_F$ are unoccupied.	4	CO1
Q 5	Define Bohr magneton. Discuss the temperature variation of paramagnetic and diamagnetic susceptibilities of materials.	4	CO1
	SECTION B		
Q 6	 i. Discuss the classical and quantum approach to explain specific heat of solids. Derive the formula for specific heat of solids using quantum approach (Einstein Formula). ii. A Ge semiconductor diode carries a current of 1 mA at room temperature when a forward bias of 0.15 V is applied, estimate the reverse saturation current at room temperature. 	5 5	CO2
Q 7	Explain various polarization mechanisms in a non-polar dielectric. For a dielectric material with $\epsilon_r = 3.6$ and $D = 285 nC m^{-2}$, find the magnitudes of E , $P \wedge \chi_e$.	5+5	CO2
Q 8	i. A square of area 100 cm ² is at rest in the frame of reference of S. Observer S'	5+5	CO3

	moves relative to S at 0.8c and parallel to one side of the square. Determine the area as measured by S' observer.		
	ii. Consider an intrinsic Si (density=2.33 gm i , $n_i = 1.5 \times 10^{16} m^{-3}$, atomic weight =		
	28.09 <i>amu</i>) with electron mobility $\mu_n = 0.135 m^2 V^{-1} s^{-1}$. If the Si is doped with		
	one pentavalent impurity for each 10^7 Si atoms. Determine the concentration of		
	electrons (n), holes (p) and conductivity (σ).		
Q 9	Derive an expression for allowed energies for a particle in one-dimensional box of length L (infinite potential barrier). Write the normalized wave function and sketch the allowed wave-functions and probability densities for $n=1$, 2 and 3.	10	
	OR		
	i. Discuss the essential properties of a "well behaved" wave function, representing a quantum-mechanical object.		CO2
	ii. For pair production to occur charge, momentum and energy should be conserved. Considering only charge and energy conservation, will it be	5+5	
	possible for pair- production to occur in empty space?		
	SECTION-C		
Q 10 (a)	Define anti-ferroelectricity and ferroelectricity. Obtain the relationship between the		
- ()	macroscopic dielectric constant and polarizabilities (Clausis-Mosotti equation)	4.0	~ ~ ~ ~
	using internal (Lorentz) field at an atom in cubic structure $\left(E_L = E + \frac{P}{3\epsilon_0}\right)$.	10	CO3
Q 10 (b)	i. The sun mass is $2.0 \times 10^{30} Kg$, its radius is $7.0 \times 10^8 m$, and its surface		
	temperature is $5.8 \times 10^3 K$. How many years are needed for the sun to lose		
	0.02% of its mass by radiation?	5+5	CO4
	 ii. The density of Aluminium (Al) is 2.7 gm cm⁻³ and its atomic mass is 26.97 a.m.u. The Al ions in metal are in Al⁺³ states and the effective mass of an electron in Al is 0.97 m_e. Calculate its Fermi Energy in eV. 		
Q 11	i. Using suitable diagram explain the phenomenon of Hall Effect. Also, find the	10	CO3
	expression for Hall Coefficient, $R_{H} = \frac{V_{H}b}{IB}$,	10	
	where V_H =Hall voltage, I = current, B= applied magnetic field, and b is dimension along the direction of applied magnetic field. Highlight any two applications.		
	ii. A photon of energy 4.25 eV strikes the surface of a metal A , the ejected photoelectrons have kinetic energy, KE_A eV and de-Broglie wavelength λ_A .	10	

	The maximum KE of photoelectrons	iberated from another metal B by the	
	photon of energy 4.7 eV is $KE_B = (KE_A)$	- 1.5) eV. If the de-Broglie wavelength	
	of these photoelectrons is $\lambda_B = 2\lambda_A$, then	what are the kinetic energies (KE _A and	
	KE _B) of ejected photoelectrons and wor	k functions of two metals?	
	OF	t.	
i.		orward and reverse bias. Describe the	10
ii.	Write the Lorentz transformation equipsimultaneous in both space and time (h in an inertial frame will also be simultarelative to it.	appening at same time and same place)	10
Values of some	e physical constants:		
Velocity of ligh	$t, c = 3 \times 10^8 m s^{-1}$	Charge of electron, $e = 1.6 \times 10^{-19} C$	
Mass of electro	$n_{e} = 9.1 \times 10^{-31} kg;$	Mass of proton/neutron =1 a.m.u.¿ 1.67	$7 \times 10^{-27} kg$
Boltzmann Cor	stant (K _B) = $1.38 \times 10^{-23} J K^{-1}$	Planck's Constant (h) = 6.6×10^{-34} Jse	c;
Permittivity of	free space $(\epsilon_0 i = 8.854 \times 10^{-12} F m^{-1})$	Permeability of free space $(\mu_0 \dot{\iota} = 4\pi \times$	$10^{-7} H m^{-1}$
	ann constant (σ)= 5.67 × 10 ⁻⁸ W m ⁻² K ⁻⁴		

CONFIDENTIAL

	OR
tion with suitable	(a) Discuss electronic, ionic, orientati diagram.
$\begin{array}{c c} \text{ration of } 10^{21} \ /\text{m}^3 \text{ to} \end{array} \begin{array}{c c} 10 & \mathbf{CC} \end{array}$	(b) Si is doped with pentavalent impurit
	make Si n-type. Calculate conductivi electron is 10 ⁴ m/s for an applied elect
	lues of some physical constants:
lectron, $e = 1.6 \times 10^{-19} C$	elocity of light, $c = 3 \times 10^8 m s^{-1}$
ton/neutron =1 a.m.u. $\frac{1}{6}$ 1.67 × 10 ⁻²⁷ kg	ass of electron, $m_e = 9.1 \times 10^{-31} kg;$
nstant (h) = 6.6×10^{-34} Jsec;	ltzmann Constant (K _B) =1.38 × $10^{-23} J K^{-1}$
v of free space $(\mu_0 \dot{c} = 4 \pi \times 10^{-7} H m^{-7})$	rmittivity of free space ($\epsilon_0 \dot{\iota} = 8.854 \times 10^{-12} F m^{-1}$
	efan-Boltzmann constant (σ)= 5.67 × 10 ⁻⁸ W m ⁻² K
10 KV /m. lectron, $e = 1.6 \times 10^{-19} C$ ton/neutron =1 a.m.u.; 1.67×10^{-27} nstant (h) = $6.6 \times 10^{-34} Jsec$;	electron is 10^4 m/s for an applied elect alues of some physical constants: elocity of light, $c=3 \times 10^8 m s^{-1}$ ass of electron, $m_e=9.1 \times 10^{-31} kg$; eltzmann Constant (K _B) =1.38 × $10^{-23} J K^{-1}$ rmittivity of free space ($\epsilon_0 i = 8.854 \times 10^{-12} F m^{-1}$