UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018 Course: B.Tech (ET+IPR) Program: Nuclear Power Generation Time: 03 hrs.

Semester: 6th Code: PSEG 433 Max. Marks: 100

Instructions: Choice only in Question 10 & 11. Assume value if any requirement to solve numerical. (Assume only if the value does not mention in question)

SECTION A

S. No.		Marks	CO	
Q 1	What is nuclear stability? Why are elements of a higher mass number not stable?	4 CO		
Q 2	List down the nuclear waste disposal method.	4	CO1	
Q3	What are the advantages of reheat cycle over the simple ranking cycle?	4	CO2	
Q4	Define the term "Breeding"	4	C01	
Q5	Explain "nuclear crosssection".	4	CO2	
	SECTION B			
Q 6	Explain different types of reactors and the various applications, advantages & disadvantages?	10	C05	
Q7	Explain the working of nuclear reactors and the safety system precautionary steps taken in a reactor.	10	CO4	
Q8	Tritium (H_3) decays by negative beta decay with a half-life of 12.33 years. The atomic weight of H_3 is 3.016. Determine mass in grams of 1 mCi of tritium?	10	CO3	
Q9	The fission product I^{131} has a half-life of 8.05 days and is produced with a yield of 2.9% (0.029 atoms per fission). Calculate the equilibrium activity of this isotope in a reactor operating at a thermal power of 3300 MW. (Assuming 200MeV / fission)	10	CO3	
	SECTION-C			
Q 10	a) Assuming that the fissioning nucleus is U^{235} , compute the value of β , defined as the mass of the fuel consumed per unit energy release. You may assume that 200 MeV is released per fission and the value of capture to fission ratio is 0.17.	10	CO3	
	 b) A monoenergetic beam of neutrons having an intensity of 4 x 1010 neutrons/ cm²-s impinges on a target 1 cm² area and 1 mm thick. There are 0.048 x 1024 atoms per cm3 in the target and the total cross section at an energy of the beam is 0.45 b. calculate (a) macroscopic total cross section? (b) How many neutron interactions per second occur in the target? (c) collision density OR 	10	CO3	
Q10	 a) The radioisotope battery is fuelled with 500g of Pu²³⁸C (Plutonium-238 carbide), which has a density of 12.5 g/cm³. The Pu²³⁸ has a half-life of 89 years, and emits 5.6 MeV per disintegration, all of which may be assumed to be absorbed in the generator. The thermal to electrical efficiency of the system is 6 percent. Calculate (a) the specific power in watts (thermal) per 	20	CO1,	

		gram of fuel; (b) the power density in watts (thermal) per cm3; (c) the fuel efficiency in curies per watt (thermal); (d) the total electrical power of the generator.		
Q11	a)	Assume of an error in its design, a thermal reactor that was supposed to breed on the Th ²³² -U ²³³ cycle, unfortunately, has a breeding ratio of only 0.96. If the reactor operates at a thermal power level of 500 MW, how much Th ²³² will it convert in one year? Capture to fission ratio for U ²³³ = 0.09 (E _R = 200 MeV/fission)	10	CO3,5
	b)	Discuss briefly the future scenario of the nuclear power plant.	10	CO4,5
		OR	10	
Q11	a)	Discuss types of moderator and coolant, also elaborate the advantageous use for each of them. & also draw and discuss the layout of the gas-cooled nuclear power plant.	10	CO4
	b)	Discuss multiple layers of safety at the nuclear power plant.	10	CO4,5