Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.Tech.,ASE-A Semester -VI
Subject (Course): Digital signal processing Max. Marks: 100

Course Code : ELEG 311 Duration : 3 Hrs

No. of page/s:2

	SECTION A		
S. No.		Marks	CO
Q 1	Let X(K) be a 12-point DFT of a length 12 real sequence $x(n)$. The first 7 samples of X(K) are given by $X(0)=8$, $X(1)=-1+j2$, $X(2)=2+j3$, $X(3)=1$, $X(4)=2+j2$, $X(5)=3+j$, $X(6)=-1-3$; Determine the remaining samples of X(K).	5	CO1
Q2	Compare direct form I and direct form II realization of IIR systems.	5	CO4
Q3	State and prove the initial value theorem and convolution time with respect to Z-transform.	5	CO2
Q4	Explain with the block diagram the basic Elements of Digital Signal processing	5	CO1
	Note: Attempt any one question from Qno 8 & Qno 9		
Q5	(a) find $x (\infty)$, If $X(z) = \frac{2z+3}{(z+1)(z+3)(z-1)}$ (b)Define odd signal? And find the even and odd components of the signal $x (n) = \sin^2 n + 2\sin^2 n \cos n$.	5+5	CO1
Q6	Determine H(Z) using impulse invariant technique for the analog system function $H(S) = \frac{1}{(S+1)(S^2+S+2)}$ for a sampling frequency of 4 samples per second	10	CO4

	(b) For each impulse response determine the system is i) stable ii) causal		
	i) h (n)= $\sin (\pi n / 2)$		
	ii) h (n) = δ (n) + $\sin \pi$ n		
	iii) $h(n) = 2 n u(-n)$.		
Q8	(a) Compare analog and digital filters. State the advantages of digital filters over analog filters.	5+5	C02
	(b) Prove that for causal sequences, the ROC is the exterior of a circle of radius r.	3+3	C02
Q9	(a) What are two properties of twiddle factor W_N that are exploited in Fast Fourier transform algorithm? Prove them (b) Distinguish between recursive realization and non-recursive realization	6+4	CO3
	SECTION-C 40 Marks		
	SECTION-C 40 Marks Attempt any two questions and each carry equal marks.		
Q10		10+10	CO3
Q10 Q11	Attempt any two questions and each carry equal marks. An 8-point sequence is given by x(n)={0,1,2,3,,4,5,6,7} compute 8-point FFT by using a) Radix 2 DIT algorithm b) Radix 2 DIF algorithm	10+10	CO3
Q11	An 8-point sequence is given by x(n)={0,1,2,3,,4,5,6,7} compute 8-point FFT by using a) Radix 2 DIT algorithm b) Radix 2 DIF algorithm Also sketch the magnitude and phase spectrum Obtain the i) Direct form I ii) Direct form II iii) cascade iii) parallel form realizations for the following Y (n) = -0.1y(n-1) + 0.2 y (n-2) + 3x (n) +3.6 x (n-1)		
Q11	An 8-point sequence is given by x(n)={0,1,2,3,,4,5,6,7} compute 8-point FFT by using a) Radix 2 DIT algorithm b) Radix 2 DIF algorithm Also sketch the magnitude and phase spectrum Obtain the i) Direct form I ii) Direct form II iii) cascade iii) parallel form realizations for the following Y (n) = -0.1y(n-1) + 0.2 y (n-2) + 3x (n) +3.6 x (n-1) +0.6 x (n-2)		
Q11	An 8-point sequence is given by x(n)={0,1,2,3,,4,5,6,7} compute 8-point FFT by using a) Radix 2 DIT algorithm b) Radix 2 DIF algorithm Also sketch the magnitude and phase spectrum Obtain the i) Direct form I ii) Direct form II iii) cascade iii) parallel form realizations for the following Y (n) = -0.1y(n-1) + 0.2 y (n-2) + 3x (n) +3.6 x (n-1) +0.6 x (n-2) (a) Compute the response of the system y(n)=0.7y(n-1)-0.12y(n-2)+x(n-1)+x(n-2) to		
	An 8-point sequence is given by x(n)={0,1,2,3,,4,5,6,7} compute 8-point FFT by using a) Radix 2 DIT algorithm b) Radix 2 DIF algorithm Also sketch the magnitude and phase spectrum Obtain the i) Direct form I ii) Direct form II iii) cascade iii) parallel form realizations for the following Y (n) = -0.1y(n-1) + 0.2 y (n-2) + 3x (n) +3.6 x (n-1) +0.6 x (n-2) (a) Compute the response of the system y(n)=0.7y(n-1)-0.12y(n-2)+x(n-1)+x(n-2) to input x(n)=nu(n). Is the system stable?	20	C04