Roll No:

1) UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Program: B.Tech.,ASE-A
Subject (Course): Digital signal processing
Semester -VI
Course Code : ELEG 311
Max. Marks: 100
No. of page/s: 2
Duration : 3 Hrs

SECTION A

S. No.		Marks	CO
Q 1	Let $X(K)$ be a 12-point DFT of a length 12 real sequence $x(n)$.The first 7 samples of $X(K)$ are given by $X(0)=8, X(1)=-1+j 2, X(2)=2+j 3$, $X(3)=1 j 4, X(4)=2+j 2, X(5)=3+j, X(6)=-1-3 j$ Determine the remaining samples of $X(K)$.	$\mathbf{5}$	$\mathbf{C O 1}$
Q2	Compare direct form I and direct form II realization of IIR systems.	$\mathbf{5}$	$\mathbf{C O 4}$
Q3	State and prove the initial value theorem and convolution time with respect to Z- transform.	$\mathbf{5}$	$\mathbf{C O 2}$
Q4	Explain with the block diagram the basic Elements of Digital Signal processing	$\mathbf{5}$	$\mathbf{C O 1}$

SECTION B All questions are compulsory and carry equal marks.
 Note: Attempt any one question from Qno 8 \& Qno 9

Q5	(a) find $x(\infty)$, If $\quad X(z)=\frac{2 z+3}{(z+1)(z+3)(z-1)}$ $(b) D e f i n e ~ o d d ~ s i g n a l ? A n d ~ f i n d ~ t h e ~ e v e n ~ a n d ~ o d d ~ c o m p o n e n t s ~ o f ~ t h e ~ s i g n a l ~$ $x(n)=\sin ^{2} n+2 \sin n+2 \sin ^{2} n$ cos n.	$\mathbf{5 + 5}$	$\mathbf{C O 1}$
Q6	Determine H(Z) using impulse invariant technique for the analog system function		
$H(S)=\frac{1}{(S+1)\left(S^{2}+S+2\right)}$ for a sampling frequency of 4 samples per second	$\mathbf{1 0}$	$\mathbf{C O 4}$	
Q7	(a) Compare the computation complexities of DFT \& FFT.	$\mathbf{5 + 5}$	$\mathbf{C 0 3}$

	(b) For each impulse response determine the system is i) stable ii) causal i) $h(n)=\sin (\pi n / 2)$ ii) $h(n)=\delta(n)+\sin \pi n$ iii) $h(n)=2 n u(-n)$.	$\mathbf{5 + 5}$	$\mathbf{C 0 2}$
Q8	(a) Compare analog and digital filters. State the advantages of digital filters over analog filters. (b) Prove that for causal sequences, the ROC is the exterior of a circle of radius r.	$\mathbf{6 + 4}$	$\mathbf{C O 3}$
Q9	(a)What are two properties of twiddle factor W_{N} that are exploited in Fast Fourier (ransform algorithm? Prove them (b)Distinguish between recursive realization and non-recursive realization	COM	

SECTION-C 40 Marks

Attempt any two questions and each carry equal marks.

Q10	An 8-point sequence is given by $x(n)=\{0,1,2,3,, 4,5,6,7\}$ compute 8-point FFT by using a) Radix 2 DIT algorithm b) Radix 2 DIF algorithm Also sketch the magnitude and phase spectrum	$\mathbf{1 0 + 1 0}$	$\mathbf{C O 3}$
Q11	Obtain the i) Direct form I ii) Direct form II iii) cascade iii) parallel form realizations for the following Y (n) $=-0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)$ $+0.6 x(n-2)$	$\mathbf{2 0}$	$\mathbf{C 0 4}$
Q12	(a)Compute the response of the system $y(n)=0.7 y(n-1)-0.12 y(n-2)+x(n-1)+x(n-2)$ to input $x(n)=n u(n) . I s ~ t h e ~ s y s t e m ~ s t a b l e ? ~$ (b) A causal LTI system is defined by the difference equation $2 y(n)-y(n-2)=x(n-1)+3 x(n-2)+2 x(n-3)$ find the frequency response, magnitude response and phase response	$\mathbf{1 0 + 1 0}$	$\mathbf{C 0 2}$

Roll No:

