UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April/May 2018

Course: Discrete Mathematical Structures
Semester: II
Program: BCA
Time: 03 hrs.
Max. Marks: 100

SECTION A (All questions are compulsory)

		Marks	CO
Q 1	Let $A=\{0,1,2\}$ and $R=\{(0,0),(0,1),(0,2),(1,1),(1,2),(2,2)\}$ and $S=\{(0,0),(1,1),(2,2)\}$ be 2 relations on A. Show (i) R is a partial order relation. (ii) S is an equivalence relation.	4	CO1
Q 2	Define Power set. Find out the all power sets of set $\mathrm{A}=\{1,2,3,4,5\}$	4	CO1
Q 3	Show that the maximum number of edges in simple graph with n vertices is n ($\mathrm{n}-1$)/2.	4	CO2
Q 4	Define the following with example. a) Vector Space b) Spanning Set	4	$\mathrm{CO4}$
Q 5	Explain Chromatic Polynomial for a graph G (V, E) with n vertices and λ be the largest number of colors.	4	CO3

SECTION B (All questions are compulsory)

Q 6.	a)Let ' G ' be a connected planar graph with 20 vertices and the degree of each vertex is 3. Find the number of regions in the graph. b) Find if the following two graphs are planar or not.
Q 7	The number of distinct minimum spanning trees for the weighted graph below is
$\mathbf{C O B}$	$\mathbf{8}$
$\mathbf{C O 2}$	

Q 8 1. Find Hamiltonian path and Hamiltonian circuit if possible or disprove its existence in

