UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.Tech (EE) Subject (Course): Digital Signal Processing Course Code : ELEG363 No. of page/s: 02 Semester – VI Max. Marks : 100 Duration : 3 Hrs

	SECTION A		
S. No.		Marks	CO
Q 1	Discuss the need to truncate the impulse response of the ideal filter. What is the use of introducing delays in the impulse response of the ideal filter.	5	CO4
Q 2	Find the relation between Fourier transform and Z transform. Discuss the importance of a unit circle in Z domain	5	CO4
Q 3	Discuss the use of windowing. Compare the characteristics of the different window functions.	5	CO2
Q 4	Discuss stability of the system if the system has complex conjugate poles. Convert the analog filter with system function into a digital filter using bilinear transformation. The digital filter should have a resonant frequency of $\omega_r = \pi/2$. $F(s) = \frac{3s}{(s+1)(s+3)}$	5	CO1
	SECTION B		
Q 5	Use residue method to find Inverse Z transform of the following functions $F(Z) = \frac{Z^2 + 3Z}{(Z - 0.5)^3}$ 1. $F(Z) = \frac{1}{(Z+1)^2(Z - 0.5)}$	10	CO2
Q 6	Design a low pass FIR filter that approximates $H(f) = \begin{cases} 1 \text{ for } 0 \le f \le 1000 \text{ Hz} \\ 0 \text{ Otherwise} \end{cases}$ The sampling frequency is 8000Hz. The impulse response duration is to be limited to 2.5mS. Plot resulting magnitude and phase response.	10	CO3
Q 7	Obtain the cascade and parallel realizations for the system function given by $H(Z) = [(1-1/2Z^{-1})]/[(1+1/8Z^{-1}) (1+1/4Z^{-1}) + 1/6Z^{-2}]$	10	CO1
Q 8	Given x(n)=n+1 and N=8, find X(K) using Decimation in frequency fast Fourier	10	CO3

	transform(DIF FFT)				
SECTION-C					
Q 9	Design an IIR Chebyshev Low pass filter using bilinear transformation method for satisfying the following constraints.				
	Pass band cutoff frequency $(f_p)=0-400$ Hz, Stop band cutoff frequency $(f_s)=2.1$ -4kHz, Pass hand rinnla (A)=2dP				
	Pass band ripple $(A_p)=2dB$, Stop band attenuation $(A_s)=40dB$ and sampling F=10kHz. OR	20	CO4		
	Design a high pass filter for the given specifications $\alpha_p=3dB$, $\alpha_s=15dB$, $\Omega_P=1000$ rad/sec and $\Omega_s=500$ rad/sec.				
Q 10	Design a HPF with a frequency response $H_{d}(e^{jw}) = \begin{bmatrix} 1 \text{ for } \pi/4 \le \lor W \lor \le \pi \\ 0 W \le \pi/4 \end{bmatrix}$				
		20	CO3		
	Find h(n) and H(Z) for M=11 using (a) Hamming window (b) Hanning window and plot the magnitude response.				