NI	_	 ~	

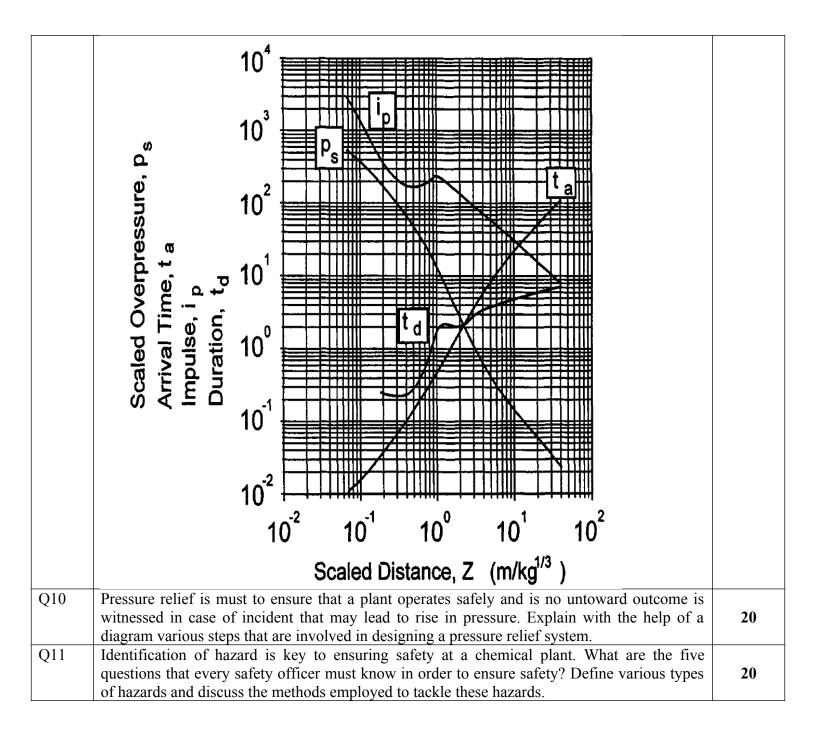
Enrolment No:

Semester: VI

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Chemical Process Safety (FSEG-312)

Program: BTech Fires and Safety Engineering


Time: 03 hrs. Max. Marks: 100

Instructions: Students are advised to answer questions sequentially and start each answer of a new sheet of

naner.

SECTION A All the questions are compulsory (Max marks 4 x 5 = 20)

S. No.		Marks	
Q1	Which one is more risky to handle i) Flammable material or ii) Combustible material, and why?		
Q2	Q2 Give broad classification of inspection techniques and list any three techniques under each category.		
Q3	What are the various stages in plant commission and the critical dates corresponding to points in various stages of commissioning?		
Q4	Why reactivity is treated as a process hazard? Give examples of reactivity as a process hazard.	5	
	SECTION B		
	All questions are compulsory (Max marks 4 x 10 = 40)		
Q5	Describe the methods used for primary screening of explosive materials. <i>Or</i>	10	
	What are stability and sensitivity tests? Describe in detail the various stability and sensitivity tests?	10	
Q6	How many types of control values are employed in a hydraulic systems? Describe each with the help of diagrams.		
Q7	Explain the concept of bonding and grounding in lightening protection. What are lightening arresters and what is the best location for placement of lightening arresters?		
Q8	What is QRA and when is it done? Give an overview of risk analysis methods.	10	
	SECTION-C		
	Answer any two question from this section (Max marks $2 \times 20 = 40$)		
Q9 (a)	What are the limitations associated with use of TNT equivalency model for estimation of overpressure from a vapour cloud explosions? Describe the difference between detonation and deflagration.	12	
(b)	A 10-kg mass of TNT explodes on the ground. Determine the overpressure, arrival time, duration time, and impulse 50 m away from the blast using the following TNT chart.	8	

