UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Corrosion Tech. /Mat. Degradation & its prevention Program: B. Tech MSNT Time: 03 hrs.

Semester: VI

Max. Marks: 100

Instructions: 1. Use graph for Q. 10.

2. Write "to the point" answers.

3. Assume data only if required and mention the assumption clearly.

SECTION A: 20 marks

S. No.						Marks	СО
Q 1	List the properties of oxide layer to be protective. Discuss Hot corrosion.					5	CO1
Q2	Describe Galvanic corrosion. List various preventive measures for it.					5	CO1
Q3	Differentiate between passivating inhibitors and precipitation inhibitors.					5	CO4
Q4	Derive the expression to measure corrosion rate in terms of depth of penetration.					5	CO2
				SECTION B: 40	marks	I	
Q5	Explain the two cathodic protection methods.Define Passivity. Describe all the regions of passivation curve with the help of a neat & labelled sketch.				10	CO4	
Q6	& labelled sketch.					^{it} 10	CO4
	OR Describe anodic protection method. Compare it with cathodic protection methods.					10	CO4
Q7	μA/cm ² . Elements Cr Ni Mo Fe	n 1 2 1 2	% 18 8 4 70	Density (g/cm ³) 7.1 8.9 10.2 7.86	Atomic weight 52 58 95.95 55.85	10	CO2
Q8	Calculate the corrosion potential and corrosion rate of Zn in 1M HCl solution. Assume that the entire Zn surface act as anode as well as cathode and the Tafel slopes are 60 mV/decade and the exchange current densities for Zn and hydrogen are 10^{-5} and 10^{-9} A/cm ² respectively. $E^{0}_{Zn2+/Zn} = -0.763$ V						CO2
			SEC	ΓΙΟΝ-C: 40 marks (20 marks each)		
Q9	A. List various factors that may lead to intergranular corrosion.B. Describe the process of sensitization.					6 6	CO3 CO3

	C. (i) Explain weld decay along with preventive measures.	8	CO1
	OR		
	(ii) Explain knife line attack in detail.	8	CO1
Q 10	Case 1: Pieces of Iron and metal Zinc with same dimensions are dipped in de-aerated HCl solution in two different beakers. Case 2: Pieces of Iron and Zinc with same dimensions are dipped in HCl solutions are connected. Exchange current density values are given: $i_0 (H_2 \text{ on } Zn) = 10^{-11} \text{ A/cm}^2$, $i_0 (H_2 \text{ on } Fe) = 10^{-5} \text{ A/cm}^2$, $i_0 (Zn) = 10^{-7} \text{ A/cm}^2$, $i_0 (Fe) = 10^{-5} \text{ A/cm}^2$. Make a comparative analysis of corrosion rates of iron and zinc in both the cases with the help of a neat plot.	20	CO2