UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Operating System Program: B. Tech. CS+CL Time: 03 hrs.

Semester: IV

Max. Marks: 100

Instructions:

SECTION A

S. No.		Marks	CO
	Attempt all the questions.	20	
1	Explain thrashing.	4	CO1 CO2
2	Highlight relevance of page table base register.	4	CO2
3	List out the various attributes of file.	4	CO3
4	Explain the difference between internal and external fragmentation.	4	CO2
5	Highlight the need of page replacement. Also discuss the basic approach.	4	CO4
SECTI	ON B		
	Attempt all the questions.		
6	Explain Interprocess communication. Discuss the ways using which IPC is implemented.	8	CO2
7	Summarize producer consumer problem. Simulate the problem and solution in C programming language.	8	CO2
8	 Using suitable example elaborate the below mentioned CPU scheduling algorithms. a) FCFS b) SJF c) Priority Scheduling d) Round robin OR Using suitable example elaborate the below mentioned page replacement algorithms. a) Optimal Page Replacement b) FIFO Page Replacement LRU Page Replacement 	8	CO3 CO4
9	Consider the following snapshot of a system at instant T_0 .	8	CO2

	Allocation Max Available				
	ABCD ABCD ABCD				
	$P_0 0 0 1 2 0 0 1 2 1 5 2 0$				
	P, 1000 1750				
	$P_2 1 3 5 4 2 3 5 6$				
	P ₃ 0 6 3 2 0 6 5 2				
	P ₄ 0014 0656				
	With reference to bankers algorithm.				
	i) Find the need matrix.				
	ii) Is the system in safe state?				
	iii) If the request for process P_1 arrives for $(0, 4, 2, 0)$, can the request be				
	granted immediately.				
10	 Write short notes on: a) Demand Paging and various page replacement policies. b) Mutex locks and Semaphore OR Write short notes on: a) Directory Structure b) Disk Scheduling 				
SECI	CION-C				
	Attempt all the questions.				
11	For the below mentioned scenario implement Optimal, FIFO and LRU page replacement algorithms. Compute the number of page faults and fault rate.		CO2		
	 a) Reference String: 0,2,1,6,4,0,1,0,3,1,2,1 b) No. of frames 3. c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4. 	20	CO3 CO4		
12	b) No. of frames 3.	20 20	CO3 CO4 CO2		
2	b) No. of frames 3.c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4.		CO3 CO4		
12	 b) No. of frames 3. c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4. Consider a paging system with the page table stored in memory. a) If a memory reference takes 200 nanoseconds, how long does a paged 		CO3 CO4 CO2 CO3		
12	 b) No. of frames 3. c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4. Consider a paging system with the page table stored in memory. a) If a memory reference takes 200 nanoseconds, how long does a paged memory reference take? 		CO3 CO4 CO2 CO3		
12	 b) No. of frames 3. c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4. Consider a paging system with the page table stored in memory. a) If a memory reference takes 200 nanoseconds, how long does a paged memory reference take? b) If we add associative registers, and 75 percent of all page-table references are 		CO3 CO4 CO2 CO3		
2	 b) No. of frames 3. c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4. Consider a paging system with the page table stored in memory. a) If a memory reference takes 200 nanoseconds, how long does a paged memory reference take? b) If we add associative registers, and 75 percent of all page-table references are found in the associative registers, what is the effective memory reference 		CO3 CO4 CO2 CO3		
12	 b) No. of frames 3. c) Out of all the mentioned algorithms identify which algorithm suffers from Belady's anomaly considering frame size of 3 and 4. Consider a paging system with the page table stored in memory. a) If a memory reference takes 200 nanoseconds, how long does a paged memory reference take? b) If we add associative registers, and 75 percent of all page-table references are found in the associative registers, what is the effective memory reference time? (Assume that finding a page-table entry in the associative registers 		CO3 CO4 CO2 CO3		

a) Deadl	ock Characteristic	S					
b) Deadl	b) Deadlock Prevention						
c) Deadl	c) Deadlock Avoidance						
d) Deadl	d) Deadlock Recovery						
Consider the	following segment	table: [10 Marks]					
Segment	Base	Length					
0	219	600					
1	2300	14					
2 3	90	100					
	1327	580					
4	1952	96					
What are the	physical addresses fo	or the following logic	al addresses?				
a) 0,430							
b) 1,10							
c) 2,500							
d) 3,400							
e) 4,112							