


End Semester Examination, May, 2018

Program Name: B.Tech ASE, ASE+AVE Course Name : Prolusion II Course Code : ASEG 322 No. of page/s:04 Isentropic tables and Handouts are allowed Roll No: -----Semester –VI Max. Marks : 100 Duration : 3 Hrs

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. The Question paper has three sections: Section A, B and C, Section B and C have internal choices.

	Section A (Attempt ALL questions)				
5x4=20 Marks					
		Mark	Course		
		S	Outcom		
			es		
Q1.	What is the difference in propulsive action between a propeller engine and a jet propulsion engine?	4	CO4		
Q2.	Describe Compressor Staging Problems, Degree of reaction, Cascade Airfoil and Diffusion Factor.	4	CO5		
Q3.	Differentiate between air specific impulse and fuel specific impulse. In what way these two parameters are useful in comparing different propulsion systems.	4	CO3		
Q4.	What are the Main Burner types, Burner components for air breathing Engines, airflow distribution and cooling air ?	4	CO2		
Q5.	Describe the effect of heat addition and heat extraction on the flow velocity in a constant area duct Rayleigh flow when the flow is (i). Initially subsonic (ii). Initially Supersonic	4	CO1		
	Section B (Attempt ALL questions) (5 X 8 =40 Marks)				
6.	A supersonic stream at Mach number 3.0 has to be decelerated in a convergent nozzle to sonic conditions at the exit of the nozzle.	8	CO2		

-			
	Calculate the pressure and temperature at the entry and the mass		
	flow rate. What will be the temperature indicated by a thermocouple		
	held in the flow direction at the entry. The conditions at the nozzle		
	exit are 0.8 at,. 293 k and the exit area is 40 cm ²		
7.	The data at inlet to a ramjet engine combustion chamber employing	8	CO3
	a hydrogen fuel are as follows: Velocity of air fuel mixture= 73 m/s,		
	Static temperature=333 K, static pressure= 0.55 bar. The heat of		
	reaction of the fuel air mixture is 1400 kJ/kg. Assuming that the		
	working fluid has the same thermodynamic properties as air before		
	and after combustion. Calculate (i). the loss in stagnation pressure		
	due to heat addition (ii). the maximum heat of reaction for which		
	flow with the specified initial conditions can be maintained		
8.	An ideal turbofan with an exhausted fan flies at sea level at a Mach	8	CO4
	number of 0.75. The Primary flow is 74.83 kg/s, and the bypass ratio		
	is 1.20. The compressor pressure ratio is 15, whereas that of the fan		
	is 3. The fuel has a heating value of 41,400 kJ/kg, and the burner		
	exit total temperature is 1380 K. Find the developed thrust and the		
	TSFC if Υ =1.40		
9.	Derive the variation of throat area ratio A/A* and pressure ratio P2/	8	C01
	P1 with respect to Mach number for the supersonic flow.	-	
	(OR)		
	A normal shock wave occurs at the inlet of a diffuser. The Mach		
	number at the exit of the diffuser is 0.3 and the area ratio between		
	the inlet and outlet of the diffuser is 0.695. Find the Mach number of		
	air at inlet to the diffuser		
10.	Derive an expression for the Mach number of flow downstream of	8	CO 3
	normal shock, in terms pf the Mach number upstream of the shock.		
	State the assumptions made.		
	(OR)		
	(a). How would you describe critical components for design of		
	Burners and list various components?		
	(b). What do you mean by afterburner? What are the components		
	required for the afterburner and its design parameters?		
	(c) Discuss about the flame stability with and without afterburner		
	Section C (Attempt ALL questions)		
	(2 X 20M =40 Marks)		
11.	Explain the assumptions in Ideal cycle analysis using the T-S		
	Diagram for Turbojet after burner engine. Derive the expressions for		
	specific thrust, specific fuel consumption, exit Mach numbers,		

	$\eta_P = \frac{2g_c V_0 (F/\dot{m}_0)}{a_0^2 [(1+f+f_{AB})(V_9/a_0)^2 - M_0^2]}$ $\eta_T = \frac{a_0^2 [(1+f+f_{AB})(V_9/a_0)^2 - M_0^2]}{2g_c (f+f_{AB})h_{PR}}$		
12.	Air enters a compressor which has the following properties, Isentropic flow $T_{t1} = 518.7^{\circ}\text{R}$, $P_{t1} = 14.70 \text{ psia}$, $\omega = 1000 \text{ rad/s}$, $r = 12 \text{ in.}$ $\alpha_1 = \alpha_3 = 40 \text{ deg}$, $\dot{m} = 50 \text{ lbm/s}$, $M_1 = M_3 = 0.7$ $u_2/u_1 = 1.1$, $P_{t3}/P_{t1} = 1.3$ Gas is air. Note: For air, $\gamma = 1.4$, $c_p = 0.24 \text{ Btu}/(\text{lbm} \cdot ^{\circ}\text{R})$, $Rg_c = 1716 \text{ ft}^2/(\text{s}^2 \cdot ^{\circ}\text{R})$ $c_pg_c = 6006 \text{ ft}^2/(\text{s}^2 \cdot ^{\circ}\text{R})$ Determine the following parameters using velocity triangles of the axial compressor. a. Inlet and outlet velocity components for both rotor and stator b. Temperature and pressures at the respective stages c. Flow annulus area at the each stage using MFP (M_1)= 0.4859, MFP (M ₂)= 0.5260 d. Degree of Reaction for a single stage	20	CO5