Enrolment No:

Semester: II

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Process Optimization (EPEC 7014)

Program: M.Tech. – Energy System

Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory

SECTION A (5 x 4 marks)

Q #		Marks	CO
Q 1	Describe the "Affinity Laws"	4	CO1
Q 2	Describe the purpose of Material & Energy balance and how to apply for findings	4	CO2
Q 3	Draw the composite curve for Heating utility & Cooling utility	4	CO3
Q 4	Briefly describe the performance parameters of a thermal Power Plant	4	CO4
Q 5	Illustrate a case of textile plant where various process need to optimized for energy conservation	4	CO5
	SECTION B (4 x 10 marks)		
Q 6	Describe the energy conservation opportunities lying with electrical distribution system in an industry	10	CO1
Q 7	Draw a schematic diagram for material & energy balance in a typical boiler plant system	10	CO2
Q 8	Elaborate the steps involved for determining the Pinch point D _T min	10	CO3
Q 9	Explain the auxiliary consumption reduction techniques in a thermal power plant	10	CO4
	OR		
	Illustrate the energy saving opportunities lying with a commercial building with optimization of visual & thermal comfort	10	CO5
	SECTION-C (2 x 20 marks)		
Q 10	Explain the Reactive power management. Find out all the benefits of improving power factor from 0.6 to 0.99 of a 1000 kW load.	20	CO1
Q 11	Discuss in detail the energy optimization opportunities in a Integrated Steel Plant	20	CO4
	OR		
	Discuss in detail the energy optimization opportunities in a cement plant	20	CO4

N	ล	m	e	٠

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Process Optimization (EPEC 7014)

Semester: II

Program: M.Tech. - Energy System

Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory

SECTION A ((5 x 4 marks)	į
-------------	---------------	---

Q#		Marks	CO
Q 1	Describe the "Pump characteristic Curve" and its significance	4	CO1
Q 2	Illustrate the steps for making M&E balance diagram of a system	4	CO2
Q 3	Describe the Pinch point and Target	4	CO3
Q 4	Briefly explain the high energy consuming section / equipment of a steel plant	4	CO4
Q 5	Illustrate a case of steel re-rolling mill, where various process need to optimized for energy conservation.	4	CO5
	SECTION B (4 x 10 marks)		
Q 6	Describe the energy conservation opportunities lying with compressed air system in an industry	10	CO1
Q 7	Draw a schematic diagram for material & energy balance in a typical Cooling Tower system	10	CO2
Q 8	Explain the benefits and application of Pinch technology	10	CO3
Q 9	Explain the energy conservation possibilities in a textile plant compressed air system	10	CO4
	OR		
	Explain the various level of energy audit of a commercial building as per ASHRAE standard	10	CO5
	SECTION-C (2 x 20 marks)		
Q 10	Explain the effect of Harmonics in an electrical system, reasons and its remedies.	20	CO1
Q 11	Discuss in detail the energy optimization opportunities in a Textile Plant	20	CO4
	OR		
	Discuss in detail the energy optimization opportunities in a thermal power plant	20	CO4