UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April/May 2018

Course: Operations Research(IPES351)
Program: B.Tech Production
Time: 03 hrs.

Semester: VI
Max. Marks: 100

Instructions:

SECTION A

S. No.		Marks	CO
Q1	Explain, how will you convert an unbalanced assignment problem to a balanced assignment problem, with an appropriate example.	4	CO1
Q2	A project consists of 14 activities, A to N. The duration of these activities (in days) are shown in brackets on the network diagram. The latest finish time (in days) for node 10 is \qquad	4	CO
Q3	1. Consider the following liner programming problem. Minimize $\mathrm{Z}=\mathrm{X}_{1}-\mathrm{X}_{2}$ Subject to $\begin{aligned} & X_{1}+X_{2} \geq 2 \\ & X_{1}+2 X_{2} \leq 8 \\ & X_{1} \geq 0, \quad X_{2} \geq 0, \end{aligned}$ Identify the feasible region on a graphical representation of the problem and answer the following question: (a) What is the optimal solution (i) To the given problem?	4	CO1

	(ii) When the objective function is maximize $Z=X_{1}+X_{2}$? (iii) When X_{1} and X_{2} are unrestricted in sign? How should the first constraint be altered so that a feasible unbounded solution wbuld exist for condition (iii) above for both cases (i) and (ii)?		
Q4	Derive from the first principle the expression for P_{o} and L_{q} for a $M / M / 1 / \infty / \infty$ model.	4	CO1
Q5	Write the standard form of LPP for the following LPP: $\operatorname{Max} Z=3 X_{1}+5 X_{2}$ Subjected to $\begin{aligned} & X_{1}+X_{2} \geq 2 \\ & X_{1}+2 X_{2} \leq 8 \\ & X_{1} \geq 0, \quad X_{2} \geq 0 \end{aligned}$	4	CO2
	SECTION-B (Do either $2^{\text {nd }}$ or $3^{\text {rd }}$ question)		
Q 1	The Omega data processing company performs three types of activity: pay rolls, account receivables, and inventories. The profit and time requirements for key punch computation and office printing for a standard job are show in the following table : Omega guarantees overnight completion of the job. Any job schedule during the day can be completed during the day or night. Any job scheduled during the night, however, must be completed during the night. The capacity for both day and night are show in the following table: Formulate the linear programming problem in order to determine the 'mixture' of standard jobs that should be accepted during the day and night.	10	CO 2

Q 2	Use the relation of dominance to solve the rectangular game whose payoff matrix to A is given in table.							10	CO4
	B								
	I	0	0	0	0	0	0		
	II	4	2	0	2	1	1		
	A III	4	3	1	3	2	2		
	IV	4	3	7	-5	1	2		
	V	4	3	4	-1	2	2		
	VI	4	3	3	-2	2	2		
Q 3	Compute the sequence for the given problem when passing out is not allowed:\square							10	CO4
	Item	A			C		D		
	I	15			4		15		
	II	12			10		12		
	III	16			5		16		
	IV	17			4		17		
Q 4	People arrive at a web browsing center at the rate of $10 /$ hour (Poisson arrival). There are two computers used for browsing and the expected time taken by a person is 10 minutes (exponentially distributed). Determine: a) The probability that both the computer are free when a person arrives. b) The probability that the person can use a computer immediately on arrival. c) The probability the there is no queue on arrival. d) The expected number in the system. e) Waiting time in the queue. f) How many computers should be made available if the expected waiting time in the queue is to be less than 10 minutes?								
								10	CO4

