Name: Enrolment No:			
Cours Progr Time: Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018 Visualization of Advanced Fluid Flow and Flow Diagnostics Semester: I m: M. Tech. CFD 3 hrs. Max. Mark ions: The question paper has 03 pages.	100	
SECTION A ($5 \times 4=20$ Marks)			
S. No.		Marks	CO
Q 1	How are data classified based on the attributes of dependent and independent variables? Give an account of Brodlie's taxonomy of visualization mappings for various classes of data.	4	CO1
Q 2	What is particle advection? Define various characteristic lines that can be used to visualize a vector field through the particle advection method. Illustrate the concept using a vector data on a 2 -dimensional 6 x 4 Cartesian grid.	4	CO1
Q 3	Consider a data file "heat.dat" with data provided in 3 columns. The first, second and third column store x-coordinates, y-coordinates and temperature respectively. Write Gnuplot script/command to a. Plot contours of temperature with 20 levels. The isolines should be joined with beta spline b. Write appropriate labels on axes with custom ranges. Give a title to the plot. c. Draw a colour map for the visualization of scalar temperature d. Save the plot as a "png" image with file name "plot.png"	4	$\mathrm{CO4}$
Q 4	Draw a simple contour of the function $f(x, y)=x^{2}+y$ over $[-3,2] \times[-3,2]$ for contour level $z=4$.	4	CO1
Q 5	What is slicing? Write down the interpolation functions to evaluate an off node value of a function over a 1D linear, 2D triangular and 3D tetrahedral mesh element.	4	$\mathrm{CO3}$

SECTION B (4 x $10=40$ Marks)								
Q 6	Discuss the use of ellipsoid glyph for the visualization of a symmetric tensor.						10	CO2
Q 7	Elucidate the various visualization mapping schemes for streamline generation through a velocity vector field. How can an adaptive time stepping method be used improve the accuracy of a first order Euler scheme?						10	CO2
Q 8	Explain, using the Phong's Illumination model, the effect of various factors on the intensity of a colour we see perceive. OR What is Compositing? Derive an expression for the colour intensity on the Image plane obtained by back-to-front compositing of a ray cast.						10	CO2
Q 9	Explain the various algorithms for finding the presence and location of vortex in a fluid flow						10	CO3
SECTION-C ($2 \times 20=40$ Marks)								
Q 10	Write a code to generate a 71×71 grid as shown in figure below and write to a file the grid data in an unstructured finite element format for the purpose of visualization using TECPLOT. Take appropriate length and height of the domain. Take $\theta=5^{\circ}$.						20	CO4

Q 11 Consider the 2-D velocity filed represented on a triangular mesh element as shown in | Figure below. |
| :--- |
| The velocities at vertices A, B and C are $\{2,2\}^{\mathrm{T}},\{-2,-2\}{ }^{\mathrm{T}}$ and $\{-2,2\}^{\mathrm{T}}$ respectively. |
| Find the location and behavior of the critical point if one exists. Also, draw the |
| representative streamlines. |
| (a) What are the various critical points in a vector field? How can these critical points |
| be classified? Illustrate with examples. |
| (b)The topological behavior of a flow around an airfoil is shown below. The critical |
| points are represented by open circles. Name all the critical points shown and explain |
| the behavior of the fluid flow near these singularities. |

	Compare and contrast the Spot Noise Flow Visualization with Line Integral Convolution method for texture based visualization of velocity fields.		
SECTION-C ($2 \times 20=40$ Marks)			
Q 10	Write a code to generate a 7×16 grid as shown in figure below and write to a file the grid data in a structured format (I, J, K) for the purpose of visualization using TECPLOT.	20	CO4
Q 11	Explain the marching cube algorithm for isosurface generation in detail. Draw all distinct topological cases for a 3D case. OR (a) When does an ambiguity arise in the Marching Square contour generation algorithm? How can it be resolved? (b) Consider the following topological case for contour generation. $B_{00}=7, B_{10}=3, B_{01}=4, B_{11}=10$ Which of the cases A and B is correct if we are drawing a contour for (i) 5 and (ii) 6 ?	20	CO 3

