Name:			
Enrolm	ent No: UPES		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018		
Course Progra	[
Time: 03 hrs. Max. Marks		s: 100	
Instru	ctions: The question paper has 03 pages.		
	SECTION A (5 x 4 =20 Marks)		
S. No.		Marks	CO
Q 1	How are data classified based on the attributes of dependent and independent		
	variables? Give an account of Brodlie's taxonomy of visualization mappings for various classes of data.	4	CO1
Q 2	What is particle advection? Define various characteristic lines that can be used to		
	visualize a vector field through the particle advection method. Illustrate the concept	4	CO1
	using a vector data on a 2-dimensional 6 x 4 Cartesian grid.	-	COI
Q 3	Consider a data file "heat.dat" with data provided in 3 columns. The first, second and		
	third column store x-coordinates, y-coordinates and temperature respectively. Write		
	Gnuplot script/command to		
	a. Plot contours of temperature with 20 levels. The isolines should be		
	joined with beta spline	4	CO4
	b. Write appropriate labels on axes with custom ranges. Give a title to the	-	001
	plot.		
	c. Draw a colour map for the visualization of scalar temperature		
	d. Save the plot as a "png" image with file name "plot.png"		
Q 4	Draw a simple contour of the function $f(x, y) = x^2 + y$ over $[-3, 2] \times [-3, 2]$ for		
	contour level $z = 4$.	4	CO1
Q 5	What is slicing? Write down the interpolation functions to evaluate an off node value		002
	of a function over a 1D linear, 2D triangular and 3D tetrahedral mesh element.	4	CO3

Q 6	SECTION B (4 x 10 = 40 Marks)Discuss the use of ellipsoid glyph for the visualization of a symmetric tensor.					10	CO2	
Q 7	Elucidate the various visualization mapping schemes for streamline generation				10	002		
	through a velocity vector field. How can an adaptive time stepping method be used				10	CO2		
	improve the accuracy of a first order Euler scheme?							
Q 8	Explain, using the Phong's Illumination model, the effect of various factors on the intensity of a colour we see perceive.							
	OR				10	CO2		
	What is Compositing? Derive an expression for the colour intensity on the Image plane obtained by <i>back-to-front</i> compositing of a ray cast.							
Q 9	Explain the various fluid flow		_	-		ion of vortex in a	10	CO3
		SEC	ГІОN-С (2 :	x 20 = 40 N	Marks)			
	grid data in an unstructured finite element format for the purpose of visualization using TECPLOT. Take appropriate length and height of the domain. Take $\theta = 5^{\circ}$.							
	Upper boundary							
					T	_		
	undary			i, j+1			20	CO4
	Inflow boundar	Δy Δx	<i>i</i> -1, <i>j</i>	i, j i+1, j	h = h(x)	undary		
	Ē			i, j-1		Outlow boundary		
			$y_s = y_s(x)$			Ő		
	$\begin{array}{c} 0 \\ x \\ Expansion corner \end{array}$							
	Physical plane L						1	

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Computational Fluid Dynamics Program: B. Tech. ASE, ASE+AVE Time: 03 hrs.

Semester: VIII

Max. Marks: 100

Instructions: The question paper has 03 pages.

SECTION A (5 x 4 =20 Marks)

S. No.		Marks	CO		
Q 1	Explain briefly the various processes in the computer aided visualization pipeline.	4	C01		
Q 2	Sketch all unique topological cases for the marching square algorithm.				
Q 3	Write a FORTRAN subroutine to generate scalar values against x, y-coordinates and write these in a file such that it can be read by Gnuplot for visualization of isolines.	4	CO4		
Q 4	What are ellipsoid glyphs? Discuss how these glyphs can be used to visualize a symmetric tensor field.	4	C01		
Q 5	What do you mean by Ray Tracing? Give a brief account of various schemes for finding intensity of colour through Ray Traversal.	4	CO2		
	SECTION B (4 x 10 = 40 Marks)				
Q 6	Why is the extraction of features important for flow visualization? Explain the λ_2 method for vortex extraction.	10	CO3		
Q 7	Discuss methods for visualization of asymmetric velocity gradient tensor.	10	CO2		
Q 8	What is ray casting? For a ray cast for volume visualization, derive an expression for the colour intensity on the Image plane obtained by a Front-to-Back compositing.	10	CO2		
Q 9	Explain the original Line Integral Convolution (LIC) algorithm for visualization of vector fields. Also, explain how its speed can be enhanced with the FAST LIC algorithm.	10	CO3		
	OR				

	Compare and contrast the Spot Noise Flow Visualization with Line Integral		
	Convolution method for texture based visualization of velocity fields.		
	SECTION-C (2 x 20 =40 Marks)		
Q 10	Write a code to generate a 7 x 16 grid as shown in figure below and write to a file the grid data in a structured format (I, J, K) for the purpose of visualization using TECPLOT.	20	CO4
Q 11	Explain the marching cube algorithm for isosurface generation in detail. Draw all distinct topological cases for a 3D case. OR (a) When does an ambiguity arise in the Marching Square contour generation algorithm? How can it be resolved? (b) Consider the following topological case for contour generation. $B_{01} \bigoplus_{B_{10}} B_{11} \bigoplus_{B_{00}} B_{11} \bigoplus_{B_{00}} B_{11} \bigoplus_{B_{00}} B_{11} \bigoplus_{B_{00}} B_{10} \bigoplus_{Case B} B_{10}$ $B_{00} = 7, B_{10} = 3, B_{01} = 4, B_{11} = 10$ Which of the cases A and B is correct if we are drawing a contour for (i) 5 and (ii) 6?	20	CO3