UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

SECTION A (20 Marks)

Course: Solar Cell Technology (ELEG- 432) Program: B. Tech- Instrumentation and Control Time: 03 hrs. Semester: VI

Max. Marks: 100

Instructions: Attempt all the sections.

S. No.		Marks	CO
Q 1	Explain the mismatch losses in series, parallel and series-parallel solar PV module.	4	CO1
Q 2	Draw the current-voltage (I-V) and Power-Voltage (P-V) characteristics of photovoltaic module. Show the impact of irradiation and temperature on the PV module power performance.	4	CO2
Q 3	A solar cell has the following parameters: $V_{OC} = 0.6V$, $I_{SC} = 30mA / cm^2$, fill factor= 76% and area of cell 12x12 cm ² @STC. What will be the efficiency?	4	CO2
Q 4	Calculate the zenith angle for following values of air mass as, (i) AM= 1.5.(ii) AM= 2	4	C01
Q 5	Briefly define (a) PV cell, module and array system (b) Series, parallel and total –cross-tied interconnections of PV module	4	CO3
	Answer any four questions.		
Q 6	Calculate the efficiency and peak power of Silicon solar cell operating temperature at 27°C, with short circuit current of 2.2 A, and operating under standard solar irradiation of 1000W/m ² . The area of the solar cell is about 100 cm ² .	10	CO2
Q 7	Analyze the importance of site survey for PV plant installation in terms of (i) Solar irradiation availability (ii) dust samples (iii) PV array mounting type (iv) sun path.	10	CO3
Q 8	Evaluate the monthly average clearness index for 10 April, 2002, at a surface located at latitude 40°N. The monthly average daily terrestrial radiation on a horizontal surface is 28.1 MJ/m ² /day.	10	C01
Q 9	Analyze the operation of stand-alone PV system assisted applications for (i) solar street light system (ii) solar PV assisted water pumping system. Draw the schematic diagram for both applications.	10	CO4
Q 10	Show the effect of partial shading on PV array system performance with the help of P-V and I-V curves and discuss all the possible causes of shading effect. What is the role of electrical connections of PV module to form series, parallel, series-parallel and total-cross-tied PV array in the context of shading effect?	10	CO3

	SECTIO	DN-C (40 Marks)		
Q 11	A solar PV plant installation company h	lar		
	power plant of 10 kW power capacity (ap	old		
	applications. The installation company h			
	$I_m=6A, V_m=0.5V$) capacity of single PV m			
	series connected solar cells and each cell s	20	CO3	
	series connected solar cens and each cen s			
	(i) Total numbers of solar PV modules			
	(ii) Design the structure for series, parallel a			
	(iii) Required roof-top area for installation.			
Q 12	Design a series connected layout of all the r	equired PV modules and evaluate the pow	ver	
	capacity of PV array system to be installed i	n 46 m ² non-shaded area. The data sheet	of	
	single PV module is shown in Table-1	as,		
	-			
	Table. 1: Data sheet			
	Parameters	Values		
	Maximum power (P _{max})	230 W		
	Maximum voltage (V _m)	29.49 V		
	$\begin{array}{c} \text{Maximum current } (I_m) \\ \hline \end{array}$	7.80 A		
	Open circuit voltage (Voc)	37.20 V 8.39 A		
	Short circuit current (Isc) No. of solar cells	60 (series connected)		
	Dimensions	1626 x 990 x 50 mm		
	Operating temperature	- 40 to + 90 °C		
	Series fuse rating	15 A	20	CO4
		1011		
	OR			
	Design a PV water pumping system, which is	required to draw 25 000 liter of water eve	erv	
	day from a depth of 10 meter. The data required	•		
	• Amount of water to be pumped per day=			
	• Total vertical lift= 12 m (5 m- elevation	n)		
	• Water density = 1000 kg/m^3			
	• Acceleration due to gravity = $g = 9.8 \text{ m/}$			
	• Solar PV module used = 75 Wp			
	• Operating factor= 0.75			
	 Pump efficiency = 30% Mismatch factor= 0.85 			

QUESTION PAPER

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Solar Cell Technology (ELEG- 432) Program: B. Tech- Instrumentation and Control Time: 03 hrs. Semester: VI

Max. Marks: 100

Instructions: Attempt all the sections.

S. No.		Marks	CO
Q 1	Draw the sun path diagram during the winter, spring and summer seasons.	4	CO1
Q 2	What are the challenges posted by the light concentration in a solar PV system? Which parameter is most significantly affected by the light concentration?	4	CO1
Q 3	Calculation of declination angle for the collector located in Bombay (19. 12N, 72.51 E), which is tilted at an angle of 30° with the horizontal and is pointing due south on October.	4	CO3
Q 4	Calculate the value of air mass (AM) for the given zenith angle as, (i) Zenith angle (θ) = 48°(ii) Zenith angle (θ) = 60°	4	CO2
Q 5	Briefly define (a) Reflected radiation (b) Diffuse radiation (c) Total radiation	4	CO3
	SECTION B (40 Marks)		
	Attempt any four questions.		
Q 6	Silicon solar cell operating temperature at 35°C, with short circuit current of 2.2 A, and operating under standard illumination of 1000W/m ² . The area of the solar cell is about 100 cm ² . Evaluate the efficiency and peak power solar cell.	10	CO2
Q 7	What is the current worldwide production of solar PV modules and what is the expected growth of production in near future?	10	CO3
Q 8	Evaluate the monthly average clearness index for 12 May, 2015, at a surface located at latitude 30° N. The monthly average daily terrestrial radiation on a horizontal surface is 30.6 MJ/m ² /day.	10	CO1
Q 9	Analyze the operation of stand-alone PV system assisted applications for (i) Solar power assisted for communication system (ii) Grid interactive solar PV power system. Draw the schematic diagram for both applications.	10	CO4
Q 10	Analyze the importance of site survey for PV plant installation in terms of (i) Solar irradiation availability (ii) dust samples (iii) PV array mounting type (iv) sun path.	10	CO3
	SECTION-C (40 Marks)		
	SECTION-C (40 Marks)		

SECTION A (20 Marks)

	\rightarrow canacity of PV array system	n to be installed i	n 150 m ² uset	ful area. The	data sheet of		
	capacity of PV array system single PV module is shown						
	single F v module is shown	III 1 aute- 1 as,					
	Modu Max Po Open-C Short-C Optimu Optimu Temp C Temp C Temp C Max Sys	0	RNG- /mp) mp' -0.4 -0.3 0.0 600VE 12kgs / 2 35mm / 39.5x39	150D 150 W 22.5 V 9.05 A 17.9 V 8.38 A 14%/°C 00%/°C 04%/°C 00C (UL) 15 A Class C 26.5lbs 0x1.4in			
Q 12	Design a 210 W solar PV module, which comprised the series connections of solar cells. A single solar cell size 120 mm × 120 mm is considered, which delivers the maximum current (I _m) and maximum voltage 6A and 0.5V respectively at standard solar irradiation level 1000W/m ² . Calculate (i) Total area of solar PV module (ii) Number of solar cells (if connected in series) * Assume 60 cm is extra area in entire PV module						
	OR Design a solar PV system wh Computer. The system show operating hours and the powe	ld allow the use of	of loads in th	e non-sunshi	ne hours. The	20	CO4
	OR Design a solar PV system wh Computer. The system show	ld allow the use of rating of these load	of loads in the ds are given in	e non-sunshi the Table- 2 a	ne hours. The as,	20	CO4
	OR Design a solar PV system wh Computer. The system show operating hours and the powe Table- 2: The wattage	ld allow the use of rating of these load	of loads in the ds are given in	e non-sunshi the Table- 2 a illy usage of t Watt-Hr	ne hours. The as,	20	CO4
	OR Design a solar PV system wh Computer. The system show operating hours and the powe Table- 2: The wattage r Load CFL	Id allow the use ofrating of these loadrating in the numberWattsH/day95	of loads in the ds are given in of hours of da	e non-sunshi the Table- 2 a illy usage of t Watt-Hr 90	ne hours. The as,	20	CO4
	OR Design a solar PV system wh Computer. The system show operating hours and the powe Table- 2: The wattage to Load CFL FAN	Id allow the use of rating of these load rating in the numberWattsH/day95608	of loads in the ds are given in of hours of da Number	e non-sunshi the Table- 2 a illy usage of t Watt-Hr 90 480	ne hours. The as,	20	CO4
	OR Design a solar PV system wh Computer. The system show operating hours and the powe Table- 2: The wattage r Load CFL FAN TV (21")	Id allow the use of rating of these loadwating in the numberWattsH/day956081502	of loads in the ds are given in of hours of da Number	e non-sunshi the Table- 2 a illy usage of t Watt-Hr 90 480 300	ne hours. The as,	20	CO4
	OR Design a solar PV system wh Computer. The system show operating hours and the powe Table- 2: The wattage to Load CFL FAN	Id allow the use of rating of these load rating in the numberWattsH/day95608	of loads in the ds are given in of hours of da Number	e non-sunshi the Table- 2 a illy usage of t Watt-Hr 90 480	ne hours. The as,	20	CO4