UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course : THERMAL UTILITIES - II Program: M.TECH (ES) Time: 03 hrs. Semester: II

Max. Marks: 100

Instructions: STEAM TABLE AND PSYCHROMETRIC CHART ALLOWED

	SECTION A				
S. No.		Marks	CO		
	Attempt all the questions	20	CO1		
Q 1	Distinguish between dry and wet compression .What are the advantages of one over the other.	4	CO1		
Q 2	Explain the effect of low suction pressure and high delivery pressure on volumetric efficiency of a reciprocating compressor.	4 003			
Q 3	Discuss briefly the factors affecting the choice of refrigerant commonly used in refrigerating plants.	4	CO1		
Q 4	Define the term bypass factor used for cooling coil and heating coil. And find the expression for that.	4	CO2		
Q 5	Explain why entropy remains constant for a reversible adiabatic process	4	CO1		
	SECTION B				
	Attempt any four of the following :	40			
Q 6	A single cylinder reciprocating compressor has a bore of 120 mm and a stroke of 150 mm, and is driven at a speed of 1200 rpm. It is compressing CO_2 gas from a pressure of 120 kPa and a temperature of 20°C to a temperature of 215°C .Assuming polytropic compression with n=1.3 ,no clearance and volumetric efficiency of 100%. Calculate (a) pressure ratio (b) indicated power (c) shaft power with a mechanical efficiency of 80%. (d) Mass flow rate.	10	C05		
Q 7	Discuss the working of lithium bromide vapour absorption refrigeration system.	10	C03		
Q 8	In an absorption type refrigerator ,the heat is supplied to ammonia generator by condensing steam at 2 bar and 90% dry .The temperature to be maintained in the refrigerator at -5°C.The temperature of the atmosphere is 30 °C .Find the maximum COP possible of the refrigerator .If the refrigeration load is 20 tons and actual COP is 70 % of the maximum COP ,find the mass of steam required per hour.	10	CO3		
Q 9	Discuss the working of centrifugal pump and elaborate its advantages over reciprocating pump.	10	CO4		
Q 10	A reversible engine operates between temperatures T1 and T (T1 > T). The energy rejected from this engine is received by a second reversible engine at the same temperature T. The second engine rejects energy at temperature T2 (T2 < T) that temperature T is the arithmetic mean of temperatures T1 and T2 if the	10	CO6		

	engines pr	oduce the same an	mount of work outp	out.			
			SECT	FION-C			
	Attempt a	Ill the questions					
Q 11	.The tempor vapour is a 55% of the mass flow Take the 1 Use the fo	An ammonia refrigerator produces 15tons of ice from and at 0°C in a day 24 hours .The temperature range of the working cycle is 25°C and -15°C.The ammonia vapour is dry saturated at the end of the compression . Assume the actual C.O.P is 55% of the theoretical .Calculate the power required to drive the compressor and mass flow rate in kg/min . Take the latent heat of ice = 335 kJ/kg and Cp = (water) 4.2 kJ/kg°C. Use the following properties of NH ₃ .					CO2
	Temp °C 25 -15	Specific entha Liquid h _f 380.74 -54.56	alpy (kJ/Kg) Saturated vapour hg 1319.21 1304.99	Specific ent Liquid Sf 0.3473 -0.2134	ropy (kJ/Kg-k) Saturated vapour sg 4.4894 5.0585		
Q 12	°C and -30 of the cycl the same to of refriger OI The atmos enters a co 14 °C and	^o C.Determine the e .If the actual CC emperature ,calcu ation . R pheric air at 30°C coling coil at the ra the bypass factor	work of compress OP is 45% of the Ca late the power cons dry bulb temperation ate of 200 m ³ /min	ion ,refrigeration arnot COP ,whe sumption and he ure and 75% rel The coil dew po Determine 1.The	en working between eat rejected per ton ative humidity bint temperature is e temperature of air	10	CO6,CO2
Q 13	Vapour ren An air con	noved per minute ditioning system	4. The sensible heat is to be maintained litions are 40°C D	at factor of the p at 27°C DBT at	nd 60%Relative	20	CO2

	n .60% of the return air is recirculated and mixed with 40% of fresh air
before the	e cooling coil. The condition of the air leaving the cooling coil is 18°C.
D	etermine:
a)	Room sensible heat factor
b)	The condition of air entering the auditorium
c)	Amount of make up air.
d)	Apparatus dew point temperature
	Bypass factor of the cooling coil