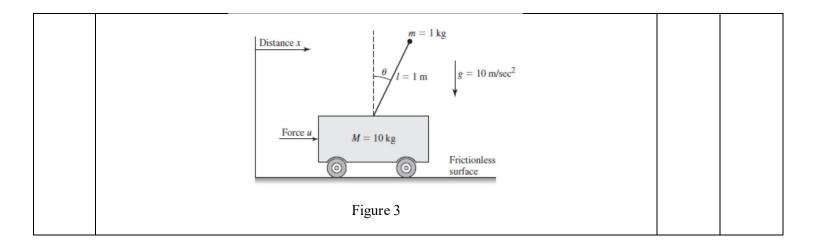
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Robotics Control System Program: M.Tech ARE Time: 03 hrs.

Semester: II


Max. Marks: 100

Instructions:

SECTION A

C N			
S. No.	All questions are compulsory. (5x4=20)	Marks	CO
Q 1	What are the objectives in the design of control system.Differentiate between regulation and tracking of a system?	4	CO1
Q 2	Differentiate between linear and nonlinear neural networks?	4	CO1
Q 3	What are the limitations of linearization of a system. What is the need of nonlinear system analysis?	4	CO3
Q 4	Differentiate between autonomous and non autonomous system with some example?	4	CO2
Q 5	What do you understand by sigmoidal activation function for nonlinear neural network?	4	CO4
	SECTION B		
Q 6	What do you understand by robust control? Draw the block diagram consisting of all nonlinearities and disturbances and obtain the transfer function.	10	CO4
Q 7	For a dynamical system $\begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} = \begin{bmatrix} x_{2} \\ x_{1} - x_{2} \sin x_{1} \end{bmatrix}$ (a) Find the equilibrium point for this system. (b) Linearize the system about the found equilibrium point. (c) Determine if the linearized system is stable, asymptotically stable or unstable.	10	CO2
Q8	What do you understand by Fuzzy PID Controller. Obtain the derivation for discrete time system. How the rule can be made in fuzzy control?	10	CO2
Q 9	The state equation of a linear time invariant system is given below:	10	CO2

	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$		
	Where u ≥0.		
	Determine the following		
	 (i) The state transition matrix (ii) <i>Controllability</i> and Observability of the system. 		
	SECTION-C		
Q10(a)	Consider the four robot are connected in the following manner shown in fig 1.		
		10	CO3
	Fig 1		
Q10(b)	Using graph theory, obtain the vector matrix and comment on the stability using Lyapunov function. Assume x _i (t) represents the state of each agent. Explain the concept of completely controllable and completely observable system with respect to eigen value? How is Pole Placement technique better Compared to the normal Eigen value technique.	10	CO2
Q 11	Consider a dynamical system that consists of a cart with an inverted pendulum attached to it as depicted in figure 3. (i)Write the Lagrange equation of motion for the system. (ii)Represent the obtained model in the state space format using the state variables	20	CO2
	$X_1=X,$ $X_2=\dot{x},$ $X_3=\theta,$ $X_4=\dot{\theta}$		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Robotics Control System Program: M.Tech ARE Time: 03 hrs. Semester: II

Max. Marks: 100

Instructions:

	SECTION A		
S. No.	All questions are compulsory. (5x4=20)	Marks	CO
Q 1	What do you understand by feedback control system. What are nonlinearity present in the feedback control system.	4	CO1
Q 2	For the following scalar nonlinear function $\mathscr{K} = -x^3 + u$ using Lyapunov approach comment on the stability?	4	CO3
Q 3	What do you understand by Luenberger observer. How does the stability change in this case.	4	CO3
Q 4	What are the objectives in the design of control system.? Differentiate between regulation and tracking of a system?	4	CO4
Q 5	Construct the rule base of fuzzy controller for any system and explain the architecture of Mamdani type Fuzzy Logic Control.	4	CO4
	SECTION B		
Q 6	Consider the three robot are connected in the following manner shown in fig 1. 1 e_1 e_2 e_3 g_2 $Fig1$	10	CO3

	Obtain the adjacency and Laplacian matrix and comment on the stability using		
	Lyapunov Method.		
Q 7	What do you understand by Adaptive control. Differentiate between direct and indirect adaptive control?	10	CO4
Q8	Derive the back propagation algorithm for an MLN with three layers. Use generalized delta rule.	10	CO1
Q 9	How fuzzy logic controller is differentiated form PID Controller. Explain with the closed loop controller diagram.	10	CO1
	SECTION-C		
Q 10	Using euler lagarange approach obtain the modelling for given two link manipulator as shown in figure 3. Assuming system is lumped in nature. The mass of first and second link is m_1, m_2 and the link length is l_1, l_2 respectively. The angle from the first and second link are θ_1, θ_2 respectively.	20	CO2
Q 11	Fig 2 Apply the fundamental principle of back propagation algorithm and design the neural controller and calculate the error of the structure shown in figure 3. X=0.35 0.1 A 0.3 0.3 C OUTPUT 0.9 OUTPUT 0.9 OUTPUT	20	CO4

Figure 3	
Assume neuron have sigmoidal activation function and target is 0.5.	