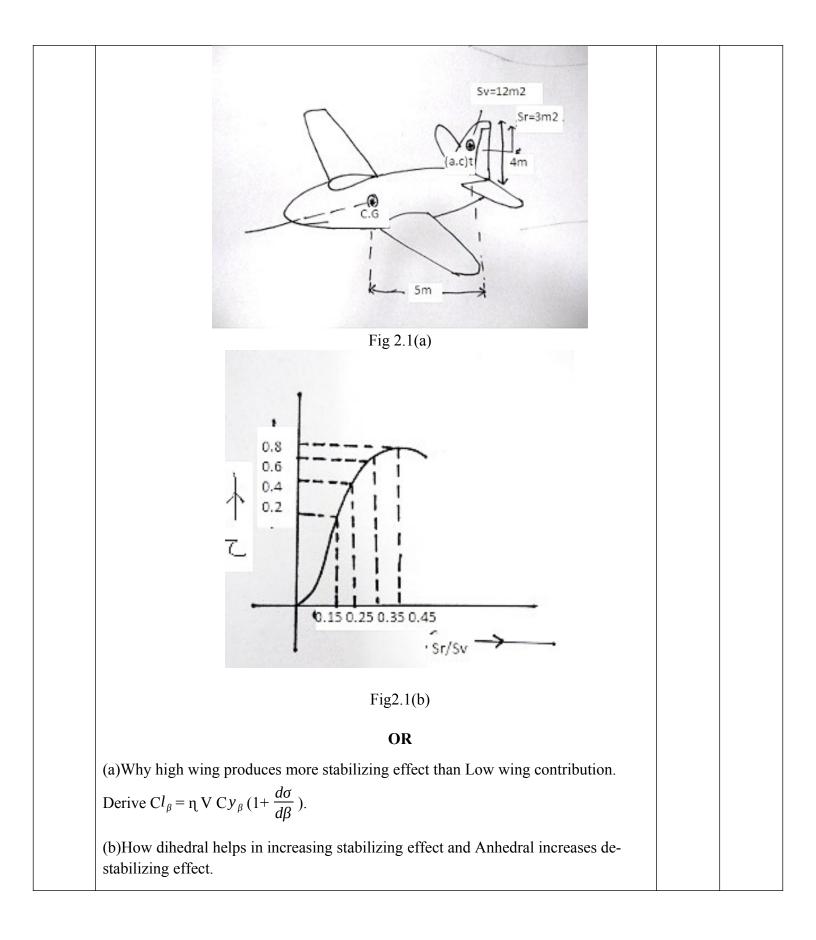
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018


Course: Flight stability and Control Program: M-Tech (UAV) Time: 03 hrs. Semester: II

Max. Marks: 100

Instructions: Note: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. The Question Paper contain 3 Sections- Section A, B and C

S. No.	All questions are compulsory	Marks	CO
Q 1	Compare stick fixed versus stick free longitudinal static stability.	4	CO1
Q 2	Explain geometrical configuration of a hinge moment coefficient with neat sketch	4	CO2
Q 3	Explain why delta wing does not require rudder for directional stability.	4	CO3
Q 4	An airplane is flying at 10Km altitude at a level trim velocity V* = 200m/s. The aircraft is heading north east at an angle 45° with respect to an Earth-fixed inertial frame of reference as shown in fig1. The aircraft starts side-slipping in the local horizontal plane due to side-wind of magnitude v=40m/s. Determine sideslip angle and wind orientation angle.	4	CO4
Q 5	For longitudinal static stability, Explain influence of Centre of gravity location with respect to neutral point.	4	CO1

Q 6	Consider the wing body model. The area and chord of the wing are $0.3m^2$ and $0.2 m$ respectively. Assume horizontal tail is added to this model. the distance from the airplanes COG to the tail AC is 0.15 m, the tail area is $0.05m^2$, tail setting angle is 3.7^0 the tail lift slope is 0.1 per degree, $\epsilon_0 = 0$ and $d\epsilon/d\alpha = 0.35$, $a = 0.09$, $h - h_{acwb} = 0.11$, $C_{m,cg} = -0.032$. if $\alpha = 11^0$. Calculate $C_{m,cg}$ for the airplane model.	10	CO1
Q 7	Derive elevator deflection angle:- $\partial_{trim} = C_{m,o} + (\partial C_{m,g}/\partial \alpha_a)\alpha_n / V_H (\partial C_{L,t}/\partial \delta_e)$ OR Explain stick fixed versus stick free longitudinal static stability. Derive: $\delta_{free} = - [(\partial C_{he}/\partial \alpha_t)/(\partial C_{he}/\partial \delta_e)] \alpha_t$	10	CO2
Q 8	Consider the full size airplane model. The airplane has wing area 19m/s², weight of22700N and elevator control effectiveness of 0.04 .Calculator elevator deflectionangle necessary to trim the airplane at a velocity of 61 m/s at sea level if a=0.08 , $C_{m,o} = 0.06$, $V_H = 0.34$, $\partial C_{m,cg} / \partial \alpha_a = -0.0133$	10	CO2
Q 9	How Cn_{β} contributes in determining weathercock stability for vertical tail. Derive its formula and draw C_n versus β curve	10	CO3
	SECTION-C		1
Q 10	 (a)Explain: Dorsal fin, Rudder Lock, Ventral fin, bank angle, load factor, sideslip velocity with necessary figure. (b) Discuss different types of Aerodynamics tabs used in aircraft. 	20	СО3
Q11	Consider an aircraft Cessna 172, NACA (0012 Series) as shown in Fig 2.1(a) and Fig 2.1(b) mentioned below having vertical tail having $C_1=0.08deg^{-1}$. Span efficiency factor=0.94,area of fuselage =50m ² ,MAC=3m,span length =15m.Find rudder control power $Cn_{\delta r}$	20	CO4

