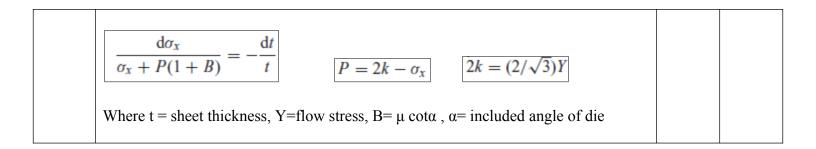
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Metallurgical aspects of metal forming (MTEG 304) Program: B.Tech MSENT Time: 03 hrs.


Semester: VI

Max. Marks: 100

Instructions: Choice in Q 9& 10

SECTION-A				
S. No.		Marks	CO	
Q 1	Describe what is meant by ideal work and write the expression for it.	4	CO2	
Q 2	Define deformation efficiency and how is it calculated?	4	CO4	
Q 3	In a material undergoing a forming operation, define the limiting stress condition for maximum reduction.	4	CO4	
Q 4	A material follows power law strain hardening: $\sigma = 100 \epsilon^{0.25}$ MPa During tensile testing, after what strain value will the necking start in this material?	4	CO3	
Q 5	Define hydrostatic pressure.	4	CO1	
	SECTION-B			
Q 6	The state-of-stress at a point is given by the following tensor: $\begin{bmatrix} 9 & 6 & 3 \\ 6 & 5 & 2 \\ 3 & 2 & 4 \end{bmatrix}$ Determine the principal stresses and principal directions. Following equations may be used to calculate invariants: $I_1 = \sigma_{xx} + \sigma_{yy} + \sigma_{zz},$ $I_2 = \sigma_{yz}^2 + \sigma_{zx}^2 + \sigma_{xy}^2 - \sigma_{yy}\sigma_{zz} - \sigma_{zz}\sigma_{xx} - \sigma_{xx}\sigma_{yy}, \text{ and}$ $I_3 = \sigma_{xx}\sigma_{yy}\sigma_{zz} + 2\sigma_{yz}\sigma_{zx}\sigma_{xy} - \sigma_{xx}\sigma_{yz}^2 - \sigma_{yy}\sigma_{zx}^2 - \sigma_{zz}\sigma_{xy}^2$	10	CO1	
Q 7	Examine three advantages of using true strain as compared to engineering strain.	10	CO3	
Q 8	Comparing hot working and cold working, elaborate 3 advantages and 3 disadvantages of hot working over cold working.	10	CO2	
Q 9	The stress (in Pa) acting on an element of a loaded body is shown in figure 1: Construct a Mohr's circle to determine the normal and shear stresses acting on a plane defined by $\theta=30^{\circ}$	10	CO1	

	Fig 1 OR Draw the Mohr's circle for the stress element shown in Fig. 2. Determine the principal stresses and maximum shear stresses. $80 \text{ MPa} \rightarrow fig 2 \rightarrow fig 2$		
Q 10	SECTION-C An aluminum alloy billet is being hot extruded from 20-cm diameter to 5-cm diameter as sketched in Figure below. The flow stress at the extrusion temperature is 40 MPa. Assume efficiency, $\eta = 0.5$. a) What extrusion pressure is required? b) Calculate the lateral pressure on the die walls.	20	CO4
Q 11	ORCalculate the maximum possible reduction in wire drawing for a material whose stress-strain curve is approximated by $\sigma = 200\epsilon^{0.18}$ MPa. Assume an efficiency of 65%.Draw a schematic of sheet drawing process.	5	CO2
	A 2.5 mm thick and 25 cm wide metal sheet is drawn to a thickness of 2.25 mm through a die of included angle 30°. The flow stress is 200 MPa and the friction coefficient is 0.08. Calculate the drawing force using the von Mises criterion. Following differential equation and other relations may be used.	15	CO4

