UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April/May 2018

Course: Introduction to Multiphase Flows
Program: M.Tech CFD
Time: 03 hrs.

Semester: II
Max. Marks: 100

Instructions:

SECTION A

S. No.	Marks	CO	
Q 1	What is Superficial velocity, Phase velocity? Explain the relationship between superficial velocity and Phase velocity?	$\mathbf{4}$	$\mathbf{C O 1}$
Q 2	Define the $-\quad$ Volume fraction of dispersed phase and continuous phases $-\quad$ Densities of dispersed phase and continuous phase	$\mathbf{4}$	$\mathbf{C O 2}$
Q 3	Explain about the molecular effects of flow around a sphere?	$\mathbf{4}$	$\mathbf{C O 3}$
Q 4	Explain about the nucleate boiling in horizontal surfaces? What do you meant by boiling crisis?	$\mathbf{4}$	$\mathbf{C O 4}$
Q 5	What is the significance of stokes number in multiphase flows?	$\mathbf{4}$	$\mathbf{C O 1}$

SECTION B

| Q 6 | Does the film boiling analysis in vertical surfaces can takes place from the following
 figure? | |
| :--- | :--- | :--- | :--- | :--- |

Q 9	Discuss about various Multiphase Models. Explain, which Multiphase model is suitable for Multiphase flow regimes? Or Write about the Laws of Heat and Mass Exchange in Discrete Phase.	8	CO4
Q 10	Discuss about the various types of flow regimes in horizontal pipes? Role of superficial velocity in liquid and gas phases for horizontal pipes from the following graph?	8	CO3
SECTION-C			
Q 11	A) What do you meant by Basset term? (5 Marks) B) The problem considers the cavitation caused by the flow separation after a sharp-edged orifice. The flow is pressure driven, with an inlet pressure of 5 $\times 10^{5} \mathrm{~Pa}$ and an outlet pressure of 9.5×10^{4} The orifice diameter is $4 \times 10^{-3} \mathrm{~m}$, and the geometrical parameters of the orifice are $\mathrm{D} / \mathrm{d}=2.88$ and $\mathrm{L} / \mathrm{d}=4$, where D, d, and L are the inlet diameter, orifice diameter, and orifice length respectively. The geometry of the orifice as shown in Figure. Explain how to do you carry out the computational analysis and with proper justification? (15 Marks)	20	CO3

	Or This problem considers an air-water mixture flowing upwards in a duct and then splitting in a tee junction. The ducts are 25 mm in width, the inlet section of the duct is 125 mm long, and the top and the side ducts are 250 mm long. The schematic of the problem as shown in Figure. Explain the procedure how will you do analysis for this problem in fluent, which type model is suitable for this problem explain in detail and discuss the expected results?		
Q 12	Modeling of Axisymmetric Two-phase Dilute Flows: The two-dimensional axisymmetric, unsteady model for a two-phase gas-droplets flow has solved by	20	CO5

