
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Analog Electronics Program: B.TECH EE IOT Semester: IV

Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory

	SECTION A		
S. No.		Marks	CO
Q1.	Analyze the Characteristics of NMOSFET and N type BJT and mention all the operating regions?	5	CO1
Q2.	Draw the transfer and output characteristics of N- channel JFET and elaborate on the input impedance of the JFET.	5	CO1
Q3.	Evaluate the output and input impedance of Voltage shunt and current shunt feedback amplifiers and also draw the block diagram?	5	CO3
Q4.	$V_1 \xrightarrow{R_1 = 200 \text{ k}\Omega} V_2 \xrightarrow{R_2 = 100 \text{ k}\Omega} V_3 \xrightarrow{C = 1 \text{ mF}} V_0$	5	CO4
	SECTION B		
Q 5	The fixed-bias configuration of Example 6.1 had an operating point defined by $VGSQ = 2 \text{ V}$ and $IDQ = 5.625 \text{ mA}$, with $IDSS = 10 \text{ mA}$ and $VGSOFF = -8 \text{ V}$. The network is redrawn as in given figure with an applied signal Vi . The value of yo is provided as 40uS . (a) Determine gm . (b) Find rd . (c) Determine Zi . (d) Calculate Zo . (e) Determine the voltage gain Av .	10	CO2

	resistance R2? IV) Shown below is a MOSFET amplifier and the characteristic curves for the MOSFET. Find R ₂ so that Vo = 10 volts. 20V 20V 20V 2.0 MA 3 1.5 MA 4 1.5 MA 2 1.5 MA 2 1.5 MA 2 SECTION-C		
Q9.	Design a band pass filter Using Operational Amplifiers for the Bandwidth 10 MHz and consider the following? (a). Highest Frequency of the Bandwidth will be 50Mhz. (b). Draw the final frequency spectrum of the filter.	20	CO2,C O3
Q10.	(a).Design a self-bias network using a JFET transistor with $ID_{SS} = 8$ mA and $Vgsoff = -6$ V to have a Q-point at $I_{DQ} = 4$ mA using a supply of 14 V. (b). Design an circuit such that if the input is $I(t) = 20u(t)$, the output will be $O(t) = -80tu(t)$.	20	CO3,C O4

Name:			