Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018			
Course: Theory of Automata \& Computation Program: B.Tech.-CS+ Cyber Law Time: 03 hrs.	Theory of Automata \& Computation Semester: I m: B.Tech.-CS+ Cyber Law Max. Mark 3 hrs. tions: Attempt all questions. Make proper assumptions if needed.	100	
SECTION A			
S. No.		Marks	CO
Q1	What is ε-closure(q)? Explain with an example.	4	CO1
Q2	Describe as simple as possible the language corresponding to each of the following regular expressions. a) $0^{*} 1\left(0^{*} 10^{*} 1\right)^{*} 0^{*}$ b) $(1+01) *(0+01)^{*}$	4	CO1
Q3	Consider the following grammar and remove the ε-production from the following grammar. $\mathrm{S} \rightarrow$ ABAC $\mathrm{A} \rightarrow \mathrm{Aa} / \varepsilon$ $\mathrm{B} \rightarrow \mathrm{bB} / \varepsilon$ $\mathrm{C} \rightarrow \mathrm{c}$	4	CO 2
Q4	Define and compare the Deterministic-PDA and Non- Deterministic-PDA? Explain with example.	4	CO3
Q5	Discuss properties of recursive languages and recursive enumerable languages.	4	CO4
SECTION B			
Q6	Construct a Moore machine which calculates the residue mod-4 for each string treated as binary integers.	10	CO1
Q7	Design a CFG for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n}!=\mathrm{m}\right\}$. And convert the obtained CFG into Chomsky Normal Form.	10	CO2
Q8	Which one of the following grammars generate the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{j}}: \mathrm{i}!=\mathrm{j}\right\}$? i) $\quad \mathrm{S} \rightarrow \mathrm{AC} / \mathrm{CB}, \mathrm{C} \rightarrow \mathrm{aCb} / \mathrm{a} / \mathrm{b}, \mathrm{A} \rightarrow \mathrm{aA} / \varepsilon, \mathrm{B} \rightarrow \mathrm{Bb} / \varepsilon$ ii) $\quad \mathrm{S} \rightarrow \mathrm{aS} / \mathrm{Sb} / \mathrm{a} / \mathrm{b}$ iii) $\mathrm{S} \rightarrow \mathrm{AC} / \mathrm{CB}, \mathrm{C} \rightarrow \mathrm{aCb} / \varepsilon, \mathrm{A} \rightarrow \mathrm{aA} / \varepsilon, \mathrm{B} \rightarrow \mathrm{Bb} / \varepsilon$ iv) $\mathrm{S} \rightarrow \mathrm{AC} / \mathrm{CB}, \mathrm{C} \rightarrow \mathrm{aCb} / \varepsilon, \mathrm{A} \rightarrow \mathrm{aA} / \mathrm{a}, \mathrm{B} \rightarrow \mathrm{Bb} / \mathrm{b}$ In the correct grammar above, what is the length of the derivation to generate the string $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}$ with $\mathrm{n}!=\mathrm{m}$?	10	$\begin{gathered} \mathrm{CO} 2 / \mathrm{C} \\ \mathrm{O3} \end{gathered}$
Q9	Describe various types of Turing machine and discuss halting problem of Turing machine. Or,	10	$\begin{gathered} \hline \mathrm{CO5} / \\ \mathrm{C01/C} \\ \mathrm{O} 2 \end{gathered}$

	Construct the Finite Automata corresponding to the following regular grammar:- $\begin{aligned} & \mathrm{S} \rightarrow 0 \mathrm{~S} / 1 \mathrm{~A} / 1 \\ & \mathrm{~A} \rightarrow 0 \mathrm{~A} / 1 \mathrm{~A} / 0 / 1 \\ & \hline \end{aligned}$		
SECTION-C			
Q10	Design a Turing Machine to recognize a language $L=\left\{0^{n} 1^{n} 2^{n}, n>=1\right\}$. Simulate Turing Machine for the string " 001122 "	20	$\mathrm{CO5}$
Q11	Design a PDA for the language L, where $L=\left\{w_{c} w^{R}: w \varepsilon(a+b)^{*}\right.$ and w^{R} is reverse of word w\}. Or, Write short notes on the following :- a) Church's Turing Hypothesis b) Regular Language c) Pumping Lemma for regular language d)Properties of context free language	20	$\begin{gathered} \mathrm{CO3} / \mathrm{C} \\ \mathrm{O} 1 / \mathrm{C} \\ \mathrm{O} 2 / \mathrm{C} \\ 05 \end{gathered}$

