Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Theory of Automata & Computation Program: B.Tech.-CS+ Cyber Law Time: 03 hrs. Semester: IV

Max. Marks: 100

Instructions: Attempt all questions. Make proper assumptions if needed.

	SECTION A				
S. No.		Marks	CO		
Q1	What is ε -closure(q)? Explain with an example.	4	CO1		
Q2	Describe as simple as possible the language corresponding to each of the following regular expressions. a) 0*1(0*10*1)*0* b) (1+01)*(0+01)*	4	CO1		
Q3	Consider the following grammar and remove the ε -production from the following grammar. $S \rightarrow ABAC$ $A \rightarrow Aa/\varepsilon$ $B \rightarrow bB/\varepsilon$ $C \rightarrow c$	4	CO2		
Q4	Define and compare the Deterministic-PDA and Non- Deterministic-PDA? Explain with example.	4	CO3		
Q5	Discuss properties of recursive languages and recursive enumerable languages.	4	CO4		
	SECTION B				
Q6	Construct a Moore machine which calculates the residue mod-4 for each string treated as binary integers.	10	CO1		
Q7	Design a CFG for the language $L = \{a^n b^m : n!=m\}$. And convert the obtained CFG into Chomsky Normal Form.	10	CO2		
Q8	Which one of the following grammars generate the language $L = \{a^i b^j : i !=j\}$? i) $S \rightarrow AC/CB, C \rightarrow aCb / a / b, A \rightarrow aA / \varepsilon, B \rightarrow Bb / \varepsilon$ ii) $S \rightarrow aS / Sb / a / b$ iii) $S \rightarrow AC/CB, C \rightarrow aCb / \varepsilon, A \rightarrow aA / \varepsilon, B \rightarrow Bb / \varepsilon$ iv) $S \rightarrow AC/CB, C \rightarrow aCb / \varepsilon, A \rightarrow aA / a, B \rightarrow Bb / b$ In the correct grammar above, what is the length of the derivation to generate the string $a^n b^m$ with $n !=m$?	10	CO2/C 03		
Q9	Describe various types of Turing machine and discuss halting problem of Turing machine. Or,	10	CO5/ C01/C O2		

	Construct the Finite Automata corresponding to the following regular grammar:-				
	$S \rightarrow 0S / 1A / 1$				
	$A \rightarrow 0A / 1A / 0 / 1$				
SECTION-C					
Q10	Design a Turing Machine to recognize a language $L = \{0^n 1^n 2^n, n \ge 1\}$. Simulate	20	CO5		
	Turing Machine for the string "001122"		005		
Q11	Design a PDA for the language L, where L= {wcw ^R : w ε (a+b)* and w ^R is reverse				
	of word w}.				
	Or,	20	CO3/C		
	Write short notes on the following :-		O1/C		
	a) Church's Turing Hypothesis		O2/C		
	b) Regular Language		05		
	c)Pumping Lemma for regular language				
	d)Properties of context free language				