Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.Tech Mechatronics Subject (Course): Materials technology Course Code : GNEG 286 No. of page/s:2 Semester – IV Max. Marks : 100 Duration : 3 Hrs

	SECTION A		
S. No.		Marks	CO
Q 1	"Hardening of steel is always followed by tempering".is it true or false? If true, give reasons.	4	CO4
Q 2	Write the classification of engineering materials.	4	CO5
Q 3	Describe the Frenkel defect and Schottky defect in an ionic crystal.	4	CO1
Q 4	Differentiate b/w charpy and Izod impact test.	4	CO2
Q 5	Differentiate b/w case carburizing and nitriding.	4	CO4
	SECTION B		
Q 6	Define steel and differentiate b/w eutectoid, hypoeutectoid and hypereutectoid steel with help of diagram.	4+6	CO3
Q 7	Differentiate b/w Normalizing and Annealing along with the induced properties and microstructure.	10	CO4
Q 8	Calculate the planar atomic density in atoms per sq mm for following crystal planes in FCC gold,(lattice constant=0.40788 nm) a.(100) b.(110) c. (111) or A sample of BCC metal was placed in an x-ray diffractometer using x-rays with a wavelength of J=0.1541 nm. Diffraction from (221) planes was obtained at 20=88.838°.calculate a value for lattice constant 'a' for this BCC elemental metal (assume first order diffraction, n=1).	10	CO1

Q 9	A steel specimen tested in standard tension test to evaluate mechanical properties. the data is given below.		
	i) Diameter of specimen =12.5 mm		
	ii) Original gauge length=62.5 mm		
	iii) Load at lower yield point=41 kN		
	iv) Load at upper yield point=42.5 kN		
	v) Maximum load=72.5 kN	10	CON
	vi) Gauge length after fracture=80.5 mm	10	CO2
	vii) Diameter after fracture=9.5 mm		
	viii) Strain at load 20 kN = 7.764×10^{-4}		
	Calculate the following		
	a) UTS c) % elongation		
	b) Modulus of elasticity d) Modulus of resilience		
	SECTION-C		
Q 10	Draw Fe-C equilibrium diagram and label the temperatures, composition and phases. Describe how the microstructure changes on cooling austenite at eutectoid composition.		
	Or		
	Draw phase diagram for Copper (Cu)-Nickel (Ni) system based on data provided below: Melting points: Cu = 1085°C , Ni= 1455°C	20	CO3
	Complete solid solubility of Cu in Ni.		
	At 1200°C, liquid phase contains 30% Ni and solid phase contains 80% Ni.		
	ii) If overall composition of system is 50% Ni and 50% Cu, calculate the relative amounts		
	of solid and liquid at 1200 °C. Show the room temperature microstructure of this polycrystalline material.		
	iii) Using Gibb's phase rule, find the degrees of freedom for pure Cu at 500°C.		
Q 11	Define the following terms		
Q 11	Define the following terms		
Q 11	i) Polymers		
Q 11		E 4	CO5
Q 11	i) Polymers	5x4	CO5
Q 11	i) Polymers ii) Refractories	5x4	CO5