

SECTION B			
S. No	All Questions are Compulsory	Marks	CO
Q 2	Analyze the HC emissions from combustion of hydrocarbon fuel under overmixing mode, from the following Figure 1 Figure 1. HC Emission formation in Compression Ignition engines from the fuel spray along with Swirl	08	CO4
Q 3	A Simple jet Carburetor is required to supply 5 kg of air and 0.5 kg of fuel $/ \mathrm{min}$. The fuel specific gravity is 0.75 , The air is initially at 1 bar and 300 K . Calculate the throat diameter choke for a flow velocity of $100 \mathrm{~m} / \mathrm{s}$. Velocity coefficient is 0.8. If the pressure drop across the fuel metering orifice is 0.8 of that of choke, Calculate orifice diameter assuming coefficient of discharge is 0.6 and $\gamma=1.4$	08	C03
Q 4	In detail explain the design of Fins in order to optimize heat transfer of Air cooled engine shown in Figure 2. Figure 2 Fins arrangement of an air cooled engine	08	C05

Q 5	A multi hole diesel injector at an injection pressure of 65 Mpa injects fuel in air at 6.0 MPa . The Nozzle hole diameter is 0.2 mm . Using the following data and single hole of the injector calculate kinematic viscosity in $\mathrm{m}^{2} / \mathrm{sec}$ of fuel for the calculated Sauter Mean diameter using El-Kotb equation is $18.9 \mu \mathrm{~m}$. OR Fuel is injected from a diesel injector in air at 57.4 bar and 800 K . The injector has following data: Find the spray break-up time, break-up length and spray penetration with no swirl If the Injector nozzle used in the above problem, injects fuel in an engine operating at 2000 rpm and the swirl ratio is 4 . Find the spray penetration and compare to injection in quiescent air.	08	C04

Q 6	A Six cylinder, four stroke gasoline engine with a bore of 125 mm and a stroke of 190 mm under test was supplied with petrol composition $\mathrm{C}=82 \%$ and $\mathrm{H}_{2}=$ 18% by mass. The dry exhaust composition by volume was $\mathrm{CO}_{2}=11.19 \% . \mathrm{O}_{2}=3.61 \%$, and N_{2} $=85.2 \%$. Determine the mass of air supplied per kg of gasoline, the percentage excess air and the volume of mixture per kg of gasoline, at $17^{\circ} \mathrm{C}$ and 1 bar which were the conditions for the mixture entering the cylinder during the test. Also determine the volumetric efficiency of the engine based on intake conditions when the mass of gasoline used per hour was 31.3 kg and the engine speed was 1500 rpm . The petrol is completely evaporated before entering the cylinder and the effect of its volume on the volumetric efficiency should be included. Take the density of gasoline vapour as 3.35 times that of air at the same temperature and pressure. 1 kg of air at ${ }^{0} \mathrm{C}$ and 1.013 bar occupies $0.773 \mathrm{~m}^{3}$. Air contains $23 \% \mathrm{O}_{2}$ by mass.	08	C02
Q 7	A six cylinder natural gas engine is to develop 110 kW at 1600 rpm . The fuel is to be used having heating value of $10287 \mathrm{Kcal} / \mathrm{kg}$ and its percentage composition by mass is $\mathrm{C}=86.2 \%$ and $\mathrm{H}_{2}=13.5 \%$. The absolute volumetric efficiency is 78% and indicated thermal efficiency is 38%, mechanical efficiency is 80%. Air consumption is 110% in excess of that required for theoretically correct combustion. (1) Estimate the volumetric composition of dry exhaust gas (2) Determine the bore and stroke of the engine, taking the stroke to bore ratio of 1.5 to 1 The volume of 1 kg air is $0.72 \mathrm{~m}^{3} . \mathrm{O}_{2}$ in air is 23.1% by mass and 20.8% by volume.		
	Total Marks	40	

SECTION-C			
Q 8	a. Differentiate the Diurnal emissions with Hot Soak Emissions of SI Engine	03	C06
	b. In detail explain the SHED test procedure evolved to test gasoline engines as per US norms	04	C06
	c. For the following Figure 3, explain the reasons for their existence at Stoichiometric Air-fuel ratio. Need not to re-produce the Figure 3 in Answer sheet. Figure 3 Relation between Exhaust emissions and Air-fuel ratio of a gasoline engine	06	C06
	d. Explain the process of Soot, HC and NOx formation in Diesel engines	07	C06
	OR		
Q 9	a. Analyze the NO formation in all three stages like: Thermal NO, Fuel NO and Prompt NO. And also explain chemical reactions proposed by Zeldovich	07	C06
	b. Analyze the NO formation in DI and as well as IDI engines and discuss the EGR to control the NOx from diesel engines from Figure 4	08	C06

	Figure 4 Exhaust Gas Recirculation		
	c. Analyze the five main sources of HC emissions formation in diesel engines	05	C06
	And		
Q 10	In detail characterize the diesel engine combustion process with reference to following a. P- θ diagram for DI and IDI engines b. Differential Heat Release Rate c. Integral Heat Release Rate d. Ignition delay for diesel and vegetable oils e. Influence of Injection timing on combustion of viscous fuels f. Parameters affecting the fuel atomization g. Parameters affecting the fuel vaporization	14	C04
	h. Influence of Spray angle on BSHC and PM i. Influence of swirl on BSFC and BSNOx j. Influence of Compression Ration on BSFC, BSNOx, BSHC and PM	06	C06
	Total Marks	40	

Empirical Calculations from Literature:

SMD $=2.33 \times 10^{3}(\Delta P)^{-0.135}\left(\rho_{a}\right)^{0.121}\left(V_{f}\right)^{0.131}$ - by Hiroyasu and Kadota in 1974
SMD $=\quad 3.08 \times 10^{6}(\Delta P)^{-0.54}\left(v_{l}\right)^{0.385}\left(\sigma_{l} x \rho_{a}\right)^{0.737}\left(\rho_{a}\right)^{0.06} \quad$ - by El-Kotb in 1982

For Low injection pressures and injection Velocities by Hiroyasu, Arai and Tabati in 1989

$$
\mathrm{SMD}=4.12 \mathrm{Re}_{\mathrm{j} 1}{ }^{0.12} \mathrm{We}_{\mathrm{j} 1}{ }^{-0.75}\left[\frac{\mu_{l}}{\mu_{a}}\right]^{0.54}\left[\frac{\rho_{l}}{\rho_{a}}\right]^{0.18} \mathrm{~d}_{\mathrm{n}}
$$

For high injection pressures and velocities

$$
\mathrm{SMD}=0.38 \mathrm{Re}_{\mathrm{j} 1} 0^{0.25} \mathrm{We}_{\mathrm{jl}}-0.32\left[\frac{\mu_{l}}{\mu_{a}}\right]^{0.37}\left[\frac{\rho_{l}}{\rho_{a}}\right]^{-0.47} \mathrm{~d}_{\mathrm{n}}
$$

where

$$
\begin{array}{lll}
\text { a } & - & \text { air } \\
1 & - & \text { liquid fuel } \\
\text { jl } & - & \text { liquid fuel jet }
\end{array}
$$

The correlations given by Hiroyasu et al., for spray penetration in quiescent air are as For $\mathrm{t}<\mathrm{tb}$

$$
\mathrm{S}=0.551\left[\frac{\Delta P}{\rho_{l}}\right]^{1 / 2} \mathrm{t}
$$

For $\mathrm{t}>\mathrm{t}_{\mathrm{b}}$

$$
\mathrm{S}=2.95\left\{\left[\frac{\Delta P}{\rho_{a}}\right]^{1 / 2} d_{n} t\right\}^{1 / 2}
$$

Where $\mathrm{t}_{\mathrm{b}}=28.65 d_{n} \rho_{l}\left[\frac{1}{\rho_{a} \Delta P}\right]^{1 / 2}$

And spray break up length is equal to spray penetration at $t=t_{b}$

$$
\mathrm{S}_{\mathrm{b}}=\mathrm{S}_{\mathrm{t}=\mathrm{tb}}=15.8 d_{n}\left[\frac{\rho_{l}}{\rho_{a}}\right]^{1 / 2}
$$

Spray penetration in presence of swirl, $\mathrm{S}_{\text {s }}$ is empirically related with swirl by

$$
\frac{S_{S}}{S}=\frac{1}{\frac{1+(2 \Pi N s S)}{U_{j l}}}
$$

Supporting Calculations

Calculation of Total Working Fluid

$\mathrm{M}_{\mathrm{t}}=$ moles of total working fluid
$M_{a}=$ moles of air present
$M_{f}=$ moles of fuel
$\mathrm{M}_{\mathrm{fc}}=$ moles of fresh charge $=\mathrm{Ma}_{\mathrm{a}}+\mathrm{M}_{\mathrm{f}}$
$\mathrm{M}_{\text {res }}=$ moles of residual gases
$M_{a}=\alpha M_{o} \quad\left(M_{o=}=k g\right.$ mole of air $/ \mathrm{kg}$ of fuel $)$
$M_{t}=M_{a}+M_{f}+M_{\text {res }}$
$=\alpha \mathrm{M}_{\mathrm{o}}+1 / \mathrm{M}_{\mathrm{f}}+\mu . \mathrm{Mfc}_{\mathrm{fc}} \quad\left(\mu=\mathrm{M}_{\mathrm{res}} / \mathrm{M}_{\mathrm{fc}}\right)$
$=\left(\alpha M_{0}+1 / M_{f}\right)+\left(\alpha M_{0}+1 / M_{f}\right) \mu$
$=\left(\alpha M_{o}+1 / M_{f}\right)(1+\mu)$

Calculation of Combustion Equation

$W=J H$

$$
\mathrm{J}=\mathrm{A}=427 \mathrm{kgf} . \mathrm{m} / \mathrm{kcal}
$$

According to the first law
$\mathrm{Q}_{\mathrm{c}-\mathrm{z}}=\mathrm{U}_{\mathrm{z}}-\mathrm{U}_{\mathrm{c}}+\mathrm{Al}_{\mathrm{cz}}$
$U_{z}=M_{z} \cdot C_{v m z} \cdot T_{z}=\beta M_{c} \cdot m C_{v m z} \cdot T_{z}$ \qquad -(1) $\quad M_{z}=$
 $\beta \mathrm{M}_{\mathrm{c}}$ ($\beta=$ coeff of molar change)
$\mathrm{U}_{\mathrm{c}}=\mathrm{M}_{\mathrm{c}} \cdot \mathrm{mC}_{\mathrm{vmc}} . \mathrm{T}_{\mathrm{c}}$

$$
\begin{aligned}
& \mathrm{Al}_{\mathrm{cz}}=\left[\left(\mathrm{P}_{\mathrm{z}}-\mathrm{P}_{\mathrm{c}}\right) / 2\right] *\left(\mathrm{~V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{c}}\right) \\
& =1 / 2\left[P_{z} V_{z}-P_{z} V_{c}{ }^{-}+P_{c} V_{z}+P_{c} V_{c}\right] \\
& =1 / 2\left[848 \mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}}-\mathrm{P}_{\mathrm{z}} \mathrm{~V}_{\mathrm{z}} / \rho^{+}+\mathrm{P}_{\mathrm{c}} \mathrm{~V}_{\mathrm{c}} \rho+848 \mathrm{M}_{\mathrm{c}} \mathrm{~T}_{\mathrm{c}}\right] \quad \text { (ratio of preliminary expansion, } \rho=\mathrm{V}_{\mathrm{z}} / \mathrm{V}_{\mathrm{c}} \text {, } \\
& =1 / 2\left[848 \mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}}-848 \mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}} / \rho{ }^{-}+848 \mathrm{M}_{\mathrm{c}} \mathrm{~T}_{\mathrm{c}} \rho+848 \mathrm{M}_{\mathrm{c}} \mathrm{~T}_{\mathrm{c}}\right] \\
& =1 / 2848\left[\mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}}(1-1 / \rho)+\mathrm{M}_{\mathrm{c}} \mathrm{~T}_{\mathrm{c}}(\rho-1)\right] \\
& \mathrm{l}_{\mathrm{cz}}=848 / 2 \times 427\left[\beta \mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}}(1-1 / \rho)-\mathrm{M}_{\mathrm{c}} \mathrm{~T}_{\mathrm{c}}(\rho-1)\right] \\
& =0.99\left[\beta \mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}}(1-1 / \rho)-\mathrm{Mc}_{c} \mathrm{~T}_{\mathrm{c}}(\rho-1)\right] \\
& Q_{c z}=\zeta Q_{1}{ }^{\prime} B \\
& =\beta \mathrm{M}_{\mathrm{c}} \cdot \mathrm{mC}_{\mathrm{vmz}} \cdot \mathrm{~T}_{\mathrm{z}}-\mathrm{M}_{\mathrm{c}} \cdot \mathrm{mC}_{\mathrm{vmc}} \cdot \mathrm{~T}_{\mathrm{c}}+0.99\left[\beta \mathrm{M}_{\mathrm{z}} \mathrm{~T}_{\mathrm{z}}(1-1 / \rho)-\mathrm{M}_{\mathrm{c}} \mathrm{~T}_{\mathrm{c}}(\rho-1)\right]
\end{aligned}
$$

Take out common terms of $\mathrm{T}_{\mathrm{c}} \& \mathrm{~T}_{\mathrm{z}}$
$\zeta \mathrm{Q}_{1}{ }^{\prime} \mathrm{B} / \mathrm{M}_{\mathrm{c}}=\beta\left[\mathrm{mC}_{\mathrm{vmz}}+0.99(1-1 / \rho)\right] \mathrm{T}_{\mathrm{z}}-\left[\mathrm{mC}_{\mathrm{vmc}}+0.99(\rho-1)\right] \mathrm{T}_{\mathrm{c}}$
for, $\mathrm{mC}_{\mathrm{vmz}}=\mathrm{a}+{ }^{1} / 2 \mathrm{~b} . \mathrm{T}_{\mathrm{z}}$ (correlation for sp . heat)
$\zeta Q_{1}{ }^{\prime} \mathrm{B} / \mathrm{M}_{\mathrm{c}}=\beta\left[\mathrm{a}+1 / 2 \mathrm{~b} \cdot \mathrm{~T}_{\mathrm{z}}+0.99(1-1 / \rho)\right] \mathrm{T}_{\mathrm{z}}-\left[\mathrm{mC}_{\mathrm{vmc}}+0.99(\rho-1)\right] \mathrm{T}_{\mathrm{c}}$
where $M_{c} / B=\left(\alpha M_{o}+1 / M_{f}\right)(1+\mu)$

$$
\begin{aligned}
& =\beta_{\mathrm{o}}[\mathrm{a}+0.99(1-1 / \rho)] \mathrm{T}_{\mathrm{z}}+\beta / 2 \mathrm{~b} \mathrm{~T}_{\mathrm{z}}^{2}-\left[\zeta \mathrm{l}^{\prime} \mathrm{B} / \mathrm{M}_{\mathrm{c}}+\{\mathrm{mCmc}+0.99(\rho-1)\}\right] \mathrm{T}_{\mathrm{c}} \\
0 & =\mathrm{ATz}^{2}+\mathrm{BT}_{\mathrm{z}}+\mathrm{C}
\end{aligned}
$$

Gas equation at the end of compression and combustion.
$\mathrm{P}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}=\mathrm{M}_{\mathrm{c}} \mathrm{T}_{\mathrm{c}}$
$\mathrm{P}_{\mathrm{z}} \mathrm{V}_{\mathrm{z}}=\mathrm{M}_{\mathrm{z}} \mathrm{T}_{\mathrm{z}}$
Divide 2 by 1
$\mathrm{P}_{\mathrm{z}} \mathrm{V}_{\mathrm{z}} / \mathrm{P}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}=\mathrm{M}_{\mathrm{z}} \mathrm{T}_{\mathrm{z}} / \mathrm{M}_{\mathrm{c}} \mathrm{T}_{\mathrm{c}} \quad$ as $\mathrm{V}_{\mathrm{z}} / \mathrm{V}_{\mathrm{c}}=\rho$ and $\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{c}}=\beta$
$\mathrm{P}_{\mathrm{z}} \rho / \mathrm{P}_{\mathrm{c}}=\beta \mathrm{T}_{\mathrm{z}} / \mathrm{T}_{\mathrm{c}}$
$P_{z}=\beta / \rho \cdot T_{z} / T_{c} . P_{c}$

Calculation of Expansion Process

$\Delta \mathrm{Qzb}=\Delta \mathrm{Uzb}+\operatorname{ALzb} \quad$ and for temp. the eq. is $\quad \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{z}}{ }^{*} 1 / \delta^{\mathrm{ne}-1}$
a) $=$ b) + c)
... eq (1)
a) $\Delta \mathrm{Q}_{\mathrm{zb}}=\mathrm{Q}_{\mathrm{L}} \cdot \mathrm{B}-\mathrm{Q}_{\mathrm{L}} \cdot \mathrm{B} \cdot \mathrm{\zeta}_{\mathrm{z}}-\mathrm{Q}_{\mathrm{L}} \cdot \mathrm{B} \mathrm{W}_{\mathrm{e}}$

$$
=\mathrm{Q}_{\mathrm{L}} \cdot \mathrm{~B}\left(1-\zeta \mathrm{z}-\mathrm{W}_{\mathrm{e}}\right), \quad \mathrm{kcal} / \mathrm{cycle}
$$

$\mathrm{W}_{\mathrm{e}}=$ relative heat losses
$\mathrm{W}_{\mathrm{e}}=0.05$ to 0.1
b) $\Delta \mathrm{U}_{\mathrm{zb}}=\mathrm{mC}_{\mathrm{vmb}} \cdot \mathrm{M}_{\mathrm{z}} \cdot \mathrm{T}_{\mathrm{b}}-\mathrm{mC}_{\mathrm{vmz}} \cdot \mathrm{M}_{\mathrm{z}} \cdot \mathrm{T}_{\mathrm{z}}$

Where; $M_{z}=\left(\alpha M_{o}+1 / m_{f}\right) \cdot B \cdot(1+\mu) \beta$
For fuel qty to be very small as compared to air it can be approximated as;

$$
M_{z}=\alpha M_{o} B(1+\mu) \beta
$$

c) $A L_{z b}=W D=V_{z} \int_{v b} P . d v$
therefore

$$
A L_{z b}=\left[P_{z} V_{z} / n_{e}-1\right]\left[1-\left(V_{z} / V_{b}\right)^{n e-1}\right] \quad \text { Substituting } V_{z} / V_{b}=\delta \text { and } P_{z} V_{z}=848 M_{z} \cdot T_{z}
$$

$$
A L_{z b}=\left[(1 / 427) 848^{*} M_{z .} T_{z} / n_{e}-1\right]\left[1-\delta^{\mathrm{ne}-1}\right]
$$

Substitute a), b) and c) in above Eq. (1)
$\mathrm{Q}_{\mathrm{L}} \cdot\left(1-\zeta \mathrm{z}-\mathrm{W}_{\mathrm{e}}\right) / \alpha \mathrm{M}_{\mathrm{o}}(1+\mu) \beta+\mathrm{mC}_{\mathrm{vmz}} \mathrm{Tz}=\mathrm{mC}_{\mathrm{vmb}} \cdot \mathrm{T}_{\mathrm{b}}+1.985 \mathrm{~T}_{\mathrm{z}} /\left(\mathrm{n}_{\mathrm{e}}-1\right)^{*}\left(1-1 / \delta^{\mathrm{ne}-1}\right)$
The expansion process calculation (Temp. and Press.) can be done with above Temp. eq. and press eq. as below
$\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{z}}{ }^{*} 1 / \delta^{\mathrm{ne}-1}$
$\mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{z}}{ }^{*} 1 / \delta^{\text {ne }}$

$$
\begin{align*}
& \mathrm{P}_{\mathrm{z}} \mathrm{~V}_{\mathrm{z}}{ }^{\text {ne }}=\mathrm{C}=\mathrm{P}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} \text { ne } \quad \text { or } \quad \mathrm{P}=\left[\mathrm{C} / \mathrm{V}^{\mathrm{ne}}\right] \quad \text { substitute } \mathrm{P} \text { in eq (2) } \tag{2}\\
& \mathrm{WD}={ }^{\mathrm{Vz}} \int_{\mathrm{Vb}}\left[\mathrm{C} / \mathrm{V}^{\mathrm{ne}}\right] \mathrm{dv}=\mathrm{C}^{\mathrm{Vz}} \int_{\mathrm{Vb}} \mathrm{~V}^{\text {-ne }} \mathrm{dv}=\mathrm{C}^{\mathrm{Vz}} \mathrm{Vbb}[\mathrm{~V} \text {-ne +1 } / \text {-ne+1] } \\
& =C\left[\left\{\mathrm{Vb}^{-\mathrm{ne}}+1-\mathrm{Vz}^{-\mathrm{ne}+1}\right\} /\{-\mathrm{ne}+1\}\right] \quad \text { substitute } \mathrm{C}=\mathrm{P}_{\mathrm{z}} \mathrm{~V}_{\mathrm{z}} \text { ne } \\
& =\left[\mathrm{P}_{\mathrm{z}} \mathrm{~V}_{\mathrm{z}} \mathrm{ne} /\{-\mathrm{ne}+1\}\right]\left[\mathrm{Vb}^{-\mathrm{ne}+1}-\mathrm{Vz}^{-\mathrm{ne}+1}\right] \\
& =\left[\mathrm{P}_{\mathrm{z}} \mathrm{~V}_{\mathrm{z}} \mathrm{ne}^{2} \cdot \mathrm{Vz}^{-n \mathrm{e}}+\mathrm{t} /\{-\mathrm{ne}+1\}\right]\left[(\mathrm{Vb} / \mathrm{Vz})^{-n e+1}-1\right] \text { substitute } \mathrm{Vb} / \mathrm{Vz}=\delta \\
& =\left[\mathrm{P}_{\mathrm{z}} \mathrm{~V}_{\mathrm{z}} / 1-\mathrm{ne}\right]\left[\left(\delta^{\mathrm{ne}-1}-1\right]\right.
\end{align*}
$$

