Enrolment No:

Semester: VI

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Supersonic Aerodynamics

Program: B. Tech ASE

Time: 03 hrs Max. Marks: 100

Instructions:

	SECTION A		
S. No.		Marks	CO
Q1	What is a <i>mach</i> wave? Derive relation for Mach angle.	4	CO1
Q2	Differentiate between Normal Shock and Expansion Fan.	4	CO2
Q3	What are simple and non-simple regions in supersonic flow?	4	CO3
Q4	Explain Prandlt-Glauert rule for subsonic and supersonic flow.	4	CO5
Q5	Define recovery factor term for measuring temperature in supersonic flow.	4	CO6
	SECTION B	1	
Q6	What do you mean by shock strength? Derive the relation of shock strength in supersonic flow.	10	CO1
Q7	A normal shock wave with pressure ratio 4.0 impinging on a plane wall. Determine the static pressure ratio for reflected normal shock wave. Air Temperature in front of the incident wave is 300 K.	10	CO2
Q8	Compute flow Mach nos. in a diverging channel with walls diverging by 20 deg and M_{inlet} =2.0. Divide the flow into three equal segments.	10	CO3
Q9	A two dimensional wedge shown below moves through the atmosphere at sea- level at zero angle of attack with mach no 3.5. Calculate C _L and C _D using shock expansion theory or	10	CO4
Q10	What are different types of supersonic wind tunnels?	10	CO6

	SECTION-C		
Q 11	A) Show that mach number behind normal shock is always subsonic.	10	CO1
	B) Find lift, drag coefficients and flow mach nos. on the Flat plate at 10 angle of attack. Compare the result's using Shock Expansion Theory and thin airfoil theory.	10	CO3
	or	'	,
Q12	A) Show that flow can be turned by an angel of ϕ_{max} where the pressure p will become zero, and $\phi_{\text{max}} = \sqrt{\frac{\gamma+1}{\gamma-1}}$ in expansion fan,	10	CO2
	B) Air flow at Mach 4.0 and Pressure 10 ⁴ N/m ² is tuned abruptly by a wall into the flow with a turning angle of 20 deg. If the shock is reflected by another wall. Determine the flow properties M and p downstream.	10	CO3
Q13	A) Derive Crocco's Theorem for supersonic flow.	10	CO4
	B) What are pressure-measuring instruments in supersonic flow? Explain them briefly.	10	CO6