UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

SECTION A

Course: Substation Designing Program: B. Tech. PSE + Electrical Time: 03 hrs.

Semester: VI

Max. Marks: 100

S. No.			<u> </u>
		Marks	CO
Q 1	Discuss the zones of protection of HVDC system	4	CO4
Q2	 Explain the following terms and their units of measurement: a) The Earth Electrode in reference to HVDC substation Anode in relation to HVDC substation b) Discharge current of surge arrester d) Impulse ratio 	4	CO2
Q3	Deduce an expression for transmission loss in terms of load current and the voltages of the HVDC transmission system	4	CO4
Q4	Write a short note on advantages of Gas Insulated Substation	4	CO3
Q5	Discuss the SF6 gas supervision system of the Gas insulated substation.	4	CO3
	SECTION B	I	
Q6	A generating station has three generators, each of 10 MVA, 10% reactance capacity, connected to a common bus through reactors of 8% to each generator. If a fault develops on the bus bar of one generator, calculate the short circuit MVA and compare it with a with a case when there is no reactors used	10	CO1
Q7	With the help of neat diagram, explain the functioning of Pressure relieved bellow compensator for the gas insulated substation OR Discuss the sequence of control actions during a line fault on HVDC Overhead line pole.	10	CO3,4
Q8	Discuss the scheme suitable for two neighboring independently controlled AC system when the voltage levels are 400 kV AC & 220 kV AC respectively.	10	CO4
Q9	State the major activities for the planning of substation project and prepare a typical L2 bar chart for typical electrical erection activities	10	CO5
Q 10	SECTION-C The following data available for the substation. Fault current: 3.1 kA for 3 sec. & Duration of fault current: 0.15 sec.	20	CO3

	Temperature Constant "S" = 160; Soil resistivity: $30x10^3$ ohm-cm		
	Soil resistivity of surface material: 30x10 ⁵ ohm-cm		
	Thickness of the gravel on the substation: 100 cm.		
	Length of 100m and a width of 50m with 6 parallel rows and 8 parallel columns		
	Grid conductors will be buried at a depth of 600mm		
	Earthing rods on the corners and perimeter of the grid; 25 no's;		
	Length of earthing rod: 3m		
	Calculate the following; a) Area of grid conductors b) Touch potential. c) Step potential		
0.11	d) Grid resistance e) Grid potential rise		
Q11	The following data of a system received from the client to a design engineer for the analysis for different lightning impulse condition and his comments.	20	CO2
	1. Basic insulation level of Incoming feeder: 650kV		
	2. Surge arrester Normal Voltage: 120kV		
	3. Basic Insulation of surge arrester: 650kV		
	4. Discharge Voltage: 350 kV		
	5. Cable basic Insulation Level: 640kV		
	6. Transformer voltages: 132/ 66kV		
	7. Transformer basic insulation level: 550 kV		
	Draw a schematic diagram for the system and give your analysis for different surge conditions. OR		
a)	a) Discuss the steps in 220kV substation design.		
	b) Design the Busbar system for the following specifications:		
	Rated Voltage: 400kv ; Rated normal current: 2000A; Creepage : 24mm/kV		
	Rated short circuit current: 40kA rms; Type of Busbar: Aluminum & Rigid		
	Height of insulator: 5 meter; Cantilever strength: 500 kg-m		
	Take other parameters, if required, as per the system voltage		

Determine i) span of insulators; ii) Force on Busbar per meter		
--	--	--

CONFIDENTIAL

н